A Hebeish

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11470829/publications.pdf Version: 2024-02-01

A HEREICL

#	Article	lF	CITATIONS
1	Highly effective antibacterial textiles containing green synthesized silver nanoparticles. Carbohydrate Polymers, 2011, 86, 936-940.	5.1	225
2	Antimicrobial wound dressing and anti-inflammatory efficacy of silver nanoparticles. International Journal of Biological Macromolecules, 2014, 65, 509-515.	3.6	222
3	Antimicrobial effect of silver nanoparticles produced by fungal process on cotton fabrics. Carbohydrate Polymers, 2010, 80, 779-782.	5.1	189
4	Environmental synthesis of silver nanoparticles using hydroxypropyl starch and their characterization. Carbohydrate Polymers, 2011, 86, 630-635.	5.1	152
5	Durable antibacterial and UV protections of in situ synthesized zinc oxide nanoparticles onto cotton fabrics. International Journal of Biological Macromolecules, 2016, 83, 426-432.	3.6	130
6	Bio-synthesis and applications of silver nanoparticles onto cotton fabrics. Carbohydrate Polymers, 2012, 90, 915-920.	5.1	129
7	Antibacterial Activities and UV Protection of the in Situ Synthesized Titanium Oxide Nanoparticles on Cotton Fabrics. Industrial & Engineering Chemistry Research, 2016, 55, 2661-2668.	1.8	129
8	Synthesis and characterization of novel carboxymethylcellulose hydrogels and carboxymethylcellulolse-hydrogel-ZnO-nanocomposites. Carbohydrate Polymers, 2013, 95, 421-427.	5.1	124
9	Cerium-initiated grafting of acrylonitrile onto cellulosic materials. Journal of Applied Polymer Science, 1968, 12, 1625-1647.	1.3	121
10	Thermal responsive hydrogels based on semi interpenetrating network of poly(NIPAm) and cellulose nanowhiskers. Carbohydrate Polymers, 2014, 102, 159-166.	5.1	115
11	Synthesis of carboxymethyl cellulose (CMC) and starch-based hybrids and their applications in flocculation and sizing. Carbohydrate Polymers, 2010, 79, 60-69.	5.1	111
12	Preparation of durable insect repellent cotton fabric: Limonene as insecticide. Carbohydrate Polymers, 2008, 74, 268-273.	5.1	109
13	Ultra-Fine Characteristics of Starch Nanoparticles Prepared Using Native Starch With and Without Surfactant. Journal of Inorganic and Organometallic Polymers and Materials, 2014, 24, 515-524.	1.9	101
14	Synthesis, characterization, release kinetics and toxicity profile of drug-loaded starch nanoparticles. International Journal of Biological Macromolecules, 2015, 81, 718-729.	3.6	93
15	Antidiabetic assessment; in vivo study of gold and core-shell silver-gold nanoparticles on streptozotocin-induced diabetic rats. Biomedicine and Pharmacotherapy, 2016, 83, 865-875.	2.5	85
16	Novel precursors for green synthesis and application of silver nanoparticles in the realm of cotton finishing. Carbohydrate Polymers, 2011, 84, 605-613.	5.1	80
17	Solid state synthesis of starch-capped silver nanoparticles. International Journal of Biological Macromolecules, 2016, 87, 70-76.	3.6	75
18	Green synthesis of easy care and antimicrobial cotton fabrics. Carbohydrate Polymers, 2011, 86, 1684-1691.	5.1	73

A HEBEISH

#	Article	IF	CITATIONS
19	Advancement in conductive cotton fabrics through in situ polymerization of polypyrrole-nanocellulose composites. Carbohydrate Polymers, 2016, 151, 96-102.	5.1	67
20	Graft copolymerization of vinyl monomers on modified cottons—I. European Polymer Journal, 1970, 6, 1575-1586.	2.6	63
21	Nanostructural Features of Silver Nanoparticles Powder Synthesized through Concurrent Formation of the Nanosized Particles of Both Starch and Silver. Journal of Nanotechnology, 2013, 2013, 1-10.	1.5	57
22	Development of cellulose nanowhisker-polyacrylamide copolymer as a highly functional precursor in the synthesis of nanometal particles for conductive textiles. Cellulose, 2014, 21, 3055-3071.	2.4	35
23	Chemical modification of starch. II. Cyanoethylation. Journal of Applied Polymer Science, 1981, 26, 171-176.	1.3	32
24	Molecular Weight and Moisture Regain of Polyacrylonitrile Cellulose Graft Copolymers. Textile Reseach Journal, 1969, 39, 99-100.	1.1	31
25	Graft Copolymerization of Vinyl Monomers on Modified Cotton. Textile Reseach Journal, 1972, 42, 10-13.	1.1	30
26	Ultraâ€microstructural features of perborate oxidized starch. Journal of Applied Polymer Science, 2014, 131, .	1.3	29
27	Radically new cellulose nanocomposite hydrogels: Temperature and pH responsive characters. International Journal of Biological Macromolecules, 2015, 81, 356-361.	3.6	27
28	Development of improved nanosilver-based antibacterial textiles via synthesis of versatile chemically modified cotton fabrics. Carbohydrate Polymers, 2014, 113, 455-462.	5.1	24
29	Nanosized carbamoylethylated cellulose as novel precursor for preparation of metal nanoparticles. Fibers and Polymers, 2015, 16, 276-284.	1.1	21
30	Development of antimicrobial medical cotton fabrics using synthesized nanoemulsion of reactive cyclodextrin hosted coconut oil inclusion complex. Fibers and Polymers, 2017, 18, 1486-1495.	1.1	20
31	Behaviour of Chemically Modified Cellulose towards Some Reactive Dyes. Coloration Technology, 1974, 90, 352-357.	0.1	19
32	New textiles of biocidal activity by introduce insecticide in cotton-poly (GMA) copolymer containing β-Cd. Carbohydrate Polymers, 2014, 99, 208-217.	5.1	18
33	High performance fabrics via innovative reinforcement route using cellulose nanoparticles. Journal of the Textile Institute, 2018, 109, 186-194.	1.0	16
34	Factors Affecting the Technological Properties of Starch Carbamate. Starch/Staerke, 1991, 43, 273-280.	1.1	13
35	Cellulose thiocarbonate-ferric nitrate redox system induced graft copolymerization of vinyl monomers on to cotton fabric. Polymer Degradation and Stability, 1993, 42, 223-230.	2.7	13
36	Synthesis and Characterization of Poly(Acrylic Acid) and Poly(Glycidyl Methacrylate) Chitosan Graft Copolymers and Their Application to Cotton Fabric. Polymer-Plastics Technology and Engineering, 2005, 44, 427-445.	1.9	4