Cornelis J P Grimmelikhuijzen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11470566/publications.pdf Version: 2024-02-01

Cornelis J P

#	Article	IF	CITATIONS
1	Neuropeptide expression in the box jellyfish <i>Tripedalia cystophora</i> —New insights into the complexity of a "simple―nervous system. Journal of Comparative Neurology, 2021, 529, 2865-2882.	0.9	9
2	An evolutionary genomics view on neuropeptide genes in Hydrozoa and Endocnidozoa (Myxozoa). BMC Genomics, 2021, 22, 862.	1.2	4
3	A comparative genomics study of neuropeptide genes in the cnidarian subclasses Hexacorallia and Ceriantharia. BMC Genomics, 2020, 21, 666.	1.2	18
4	Sawfly Genomes Reveal Evolutionary Acquisitions That Fostered the Mega-Radiation of Parasitoid and Eusocial Hymenoptera. Genome Biology and Evolution, 2020, 12, 1099-1188.	1.1	17
5	De novo transcriptome assembly of the cubomedusa Tripedalia cystophora, including the analysis of a set of genes involved in peptidergic neurotransmission. BMC Genomics, 2019, 20, 175.	1.2	35
6	Global Neuropeptide Annotations From the Genomes and Transcriptomes of Cubozoa, Scyphozoa, Staurozoa (Cnidaria: Medusozoa), and Octocorallia (Cnidaria: Anthozoa). Frontiers in Endocrinology, 2019, 10, 831.	1.5	31
7	Multifaceted biological insights from a draft genome sequence of the tobacco hornworm moth, Manduca sexta. Insect Biochemistry and Molecular Biology, 2016, 76, 118-147.	1.2	154
8	Adipokinetic hormones and their G protein-coupled receptors emerged in Lophotrochozoa. Scientific Reports, 2016, 6, 32789.	1.6	51
9	Genomic insights into the Ixodes scapularis tick vector of Lyme disease. Nature Communications, 2016, 7, 10507.	5.8	450
10	CCHamide-2 Is an Orexigenic Brain-Gut Peptide in Drosophila. PLoS ONE, 2015, 10, e0133017.	1.1	91
11	The A- and B-type muscarinic acetylcholine receptors from Drosophila melanogaster couple to different second messenger pathways. Biochemical and Biophysical Research Communications, 2015, 462, 358-364.	1.0	40
12	The genomes of two key bumblebee species with primitive eusocial organization. Genome Biology, 2015, 16, 76.	3.8	330
13	Genomic signatures of evolutionary transitions from solitary to group living. Science, 2015, 348, 1139-1143.	6.0	357
14	The First Myriapod Genome Sequence Reveals Conservative Arthropod Gene Content and Genome Organisation in the Centipede Strigamia maritima. PLoS Biology, 2014, 12, e1002005.	2.6	221
15	Evolution of the AKH/corazonin/ACP/GnRH receptor superfamily and their ligands in the Protostomia. General and Comparative Endocrinology, 2014, 209, 35-49.	0.8	131
16	Neuropeptidome of <i>Tribolium castaneum</i> antennal lobes and mushroom bodies. Journal of Comparative Neurology, 2014, 522, 337-357.	0.9	22
17	Complementary symbiont contributions to plant decomposition in a fungus-farming termite. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 14500-14505.	3.3	243
18	Two types of muscarinic acetylcholine receptors in Drosophila and other arthropods. Cellular and Molecular Life Sciences, 2013, 70, 3231-3242.	2.4	63

CORNELIS J P

#	Article	IF	CITATIONS
19	Arthropod Genomics and Pest Management Targeting GPCRs. , 2013, , 165-177.		3
20	Expression Patterns of the Drosophila Neuropeptide CCHamide-2 and Its Receptor May Suggest Hormonal Signaling from the Gut to the Brain. PLoS ONE, 2013, 8, e76131.	1.1	45
21	Isolation and Functional Characterization of Calcitonin-Like Diuretic Hormone Receptors in Rhodnius prolixus. PLoS ONE, 2013, 8, e82466.	1.1	40
22	Mini-review: The evolution of neuropeptide signaling. Regulatory Peptides, 2012, 177, S6-S9.	1.9	122
23	Genomics, Transcriptomics, and Peptidomics of <i>Daphnia pulex</i> Neuropeptides and Protein Hormones. Journal of Proteome Research, 2011, 10, 4478-4504.	1.8	179
24	The Drosophila genes CG14593 and CG30106 code for C-protein-coupled receptors specifically activated by the neuropeptides CCHamide-1 and CCHamide-2. Biochemical and Biophysical Research Communications, 2011, 404, 184-189.	1.0	80
25	Identification of the Drosophila and Tribolium receptors for the recently discovered insect RYamide neuropeptides. Biochemical and Biophysical Research Communications, 2011, 412, 578-583.	1.0	38
26	RNA interference in Lepidoptera: An overview of successful and unsuccessful studies and implications for experimental design. Journal of Insect Physiology, 2011, 57, 231-245.	0.9	729
27	The genome of the leaf-cutting ant <i>Acromyrmex echinatior</i> suggests key adaptations to advanced social life and fungus farming. Genome Research, 2011, 21, 1339-1348.	2.4	210
28	Three Homologous Subunits Form a High Affinity Peptide-gated Ion Channel in Hydra. Journal of Biological Chemistry, 2010, 285, 11958-11965.	1.6	54
29	Discovery of a Novel Insect Neuropeptide Signaling System Closely Related to the Insect Adipokinetic Hormone and Corazonin Hormonal Systems. Journal of Biological Chemistry, 2010, 285, 10736-10747.	1.6	163
30	Genomics and Peptidomics of Neuropeptides and Protein Hormones Present in the Parasitic Wasp <i>Nasonia vitripennis</i> . Journal of Proteome Research, 2010, 9, 5296-5310.	1.8	167
31	Functional and Evolutionary Insights from the Genomes of Three Parasitoid <i>Nasonia</i> Species. Science, 2010, 327, 343-348.	6.0	808
32	Genomics, transcriptomics, and peptidomics of neuropeptides and protein hormones in the red flour beetle <i>Tribolium castaneum</i> . Genome Research, 2008, 18, 113-122.	2.4	359
33	The genome of the model beetle and pest Tribolium castaneum. Nature, 2008, 452, 949-955.	13.7	1,255
34	A genome-wide inventory of neurohormone GPCRs in the red flour beetle Tribolium castaneum. Frontiers in Neuroendocrinology, 2008, 29, 142-165.	2.5	221
35	Cloning and identification of an oxytocin/vasopressin-like receptor and its ligand from insects. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 3262-3267.	3.3	154
36	A Peptide-gated Ion Channel from the Freshwater Polyp Hydra. Journal of Biological Chemistry, 2007, 282, 35098-35103.	1.6	97

CORNELIS J P

#	Article	IF	CITATIONS
37	Identification of one capa and two pyrokinin receptors from the malaria mosquito Anopheles gambiae. Biochemical and Biophysical Research Communications, 2007, 362, 245-251.	1.0	69
38	The promise of insect genomics. Pest Management Science, 2007, 63, 413-416.	1.7	41
39	Molecular identification of the first SIFamide receptor. Biochemical and Biophysical Research Communications, 2006, 340, 696-701.	1.0	58
40	Cloning and characterization of the adipokinetic hormone receptor from the cockroach Periplaneta americana. Biochemical and Biophysical Research Communications, 2006, 343, 638-643.	1.0	45
41	Identification of four evolutionarily related G protein-coupled receptors from the malaria mosquito Anopheles gambiae. Biochemical and Biophysical Research Communications, 2006, 344, 160-165.	1.0	79
42	A review of neurohormone GPCRs present in the fruitfly Drosophila melanogaster and the honey bee Apis mellifera. Progress in Neurobiology, 2006, 80, 1-19.	2.8	279
43	Identifying neuropeptide and protein hormone receptors in Drosophila melanogaster by exploiting genomic data. Briefings in Functional Genomics & Proteomics, 2006, 4, 321-330.	3.8	63
44	Molecular identification of a myosuppressin receptor from the malaria mosquito Anopheles gambiae. Biochemical and Biophysical Research Communications, 2005, 327, 29-34.	1.0	25
45	The Drosophila gene CC9918 codes for a pyrokinin-1 receptor. Biochemical and Biophysical Research Communications, 2005, 335, 14-19.	1.0	114
46	A new family of insect tyramine receptors. Biochemical and Biophysical Research Communications, 2005, 338, 1189-1196.	1.0	84
47	Drosophilamolting neurohormone bursicon is a heterodimer and the natural agonist of the orphan receptor DLGR2. FEBS Letters, 2005, 579, 2171-2176.	1.3	144
48	Control of planula migration by LWamide and RFamide neuropeptides in Hydractinia echinata. Journal of Experimental Biology, 2004, 207, 1803-1810.	0.8	52
49	Antho-RFamide-containing neurons in the primitive nervous system of the anthozoanRenilla koellikeri. Journal of Comparative Neurology, 2004, 472, 208-220.	0.9	44
50	Neuropeptides in Cnidarians. , 2004, , 115-139.		20
51	Inhibition of metamorphosis by RFamide neuropeptides in planula larvae of Hydractinia echinata. Development Genes and Evolution, 2003, 213, 579-586.	0.4	43
52	Molecular cloning, functional expression, and gene silencing of two Drosophila receptors for the Drosophila neuropeptide pyrokinin-2. Biochemical and Biophysical Research Communications, 2003, 309, 485-494.	1.0	77
53	Molecular identification of a Drosophila G protein-coupled receptor specific for crustacean cardioactive peptide. Biochemical and Biophysical Research Communications, 2003, 303, 146-152.	1.0	55
54	Molecular identification of the first insect proctolin receptor. Biochemical and Biophysical Research Communications, 2003, 306, 437-442.	1.0	34

CORNELIS J P

#	Article	IF	CITATIONS
55	Molecular cloning and functional expression of the first two specific insect myosuppressin receptors. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 9808-9813.	3.3	86
56	Molecular cloning and functional expression of the first insect FMRFamide receptor. Proceedings of the United States of America, 2002, 99, 12073-12078.	3.3	117
57	Molecular identification of the insect adipokinetic hormone receptors. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 3446-3451.	3.3	273
58	Molecular cloning and functional expression of a Drosophila receptor for the neuropeptides capa-1 and -2. Biochemical and Biophysical Research Communications, 2002, 299, 628-633.	1.0	104
59	Molecular identification of the first insect ecdysis triggering hormone receptors. Biochemical and Biophysical Research Communications, 2002, 299, 924-931.	1.0	74
60	A new case of neuropeptide coexpression (RGamide and LWamides) in Hydra , found by whole-mount, two-color double-labeling in situ hybridization. Cell and Tissue Research, 2002, 308, 157-165.	1.5	31
61	Three different prohormones yield a variety of Hydra-RFamide (Arg-Phe-NH2) neuropeptides in Hydra magnipapillata. Biochemical Journal, 1998, 332, 403-412.	1.7	62
62	Molecular Cloning of a Preprohormone from <i>Hydra magnipapillata</i> Containing Multiple Copies of Hydra‣Wamide (Leuâ€Trpâ€NH ₂) Neuropeptides: Evidence for Processing at Ser and Asn Residues. Journal of Neurochemistry, 1997, 68, 1319-1325.	2.1	48
63	Coelenterate Neuropeptides: Structure, Action and Biosynthesis. American Zoologist, 1992, 32, 1-12.	0.7	75
64	The presence and distribution of Antho-RFamide-like material in scyphomedusae. Cell and Tissue Research, 1992, 267, 67-74.	1.5	54
65	Nerve ring of the hypostome in Hydra. I. Its structure, development, and maintenance. Journal of Comparative Neurology, 1992, 326, 7-21.	0.9	74
66	Three Anthozoan Neuropeptides, Antho-RFamide and Antho-RWamides I and II, Modulate Spontaneous Tentacle Contractions in Sea Anemones. Journal of Experimental Biology, 1991, 155, 669-673.	0.8	31
67	The release sites and targets of nerve cells immunoreactive to RFamide ? an ultrastructural study ofMicrostomum lineare andDiphyllobothrium dendriticum (Plathelminthes). Zoomorphology, 1990, 109, 303-308.	0.4	16
68	Ultrastructural localization of RFamide-like peptides in neuronal dense-cored vesicles in the peduncle of Hydra. The Journal of Experimental Zoology, 1989, 249, 17-22.	1.4	69
69	Morphogenetic substances in nerve-depletedhydra. Wilhelm Roux's Archives of Developmental Biology, 1979, 187, 323-328.	1.4	8