
## C Hsein Juang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11470504/publications.pdf Version: 2024-02-01



C HSEIN LUANC

| #  | Article                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | A new approach to constructing SPT-CPT correlation for sandy soils. Georisk, 2023, 17, 406-422.                                                                                                                               | 3.5 | 2         |
| 2  | Trending topics of significance in engineering geology. Engineering Geology, 2022, 296, 106460.                                                                                                                               | 6.3 | 8         |
| 3  | Robust design optimization of retaining wall backfilled with shredded tire in the face of earthquake<br>hazards. Bulletin of Engineering Geology and the Environment, 2021, 80, 1351-1363.                                    | 3.5 | 12        |
| 4  | Soil liquefaction potential evaluation – An update of the HBF method focusing on research and practice in Taiwan. Engineering Geology, 2021, 280, 105926.                                                                     | 6.3 | 15        |
| 5  | Probabilistic analysis of a discrete element modelling of the runout behavior of the Jiweishan<br>landslide. International Journal for Numerical and Analytical Methods in Geomechanics, 2021, 45,<br>1120-1138.              | 3.3 | 28        |
| 6  | Geohazards and human settlements: Lessons learned from multiple relocation events in Badong,<br>China – Engineering geologist's perspective. Engineering Geology, 2021, 285, 106051.                                          | 6.3 | 100       |
| 7  | Probabilistic Stability Assessment of Earthen Levees Subjected to Earthquake Loads. , 2021, , .                                                                                                                               |     | 0         |
| 8  | Dynamic site response analysis in the face of uncertainty–an approach based on response surface<br>method. International Journal for Numerical and Analytical Methods in Geomechanics, 2021, 45,<br>1854-1867.                | 3.3 | 8         |
| 9  | Probabilistic characterization of subsurface stratigraphic configuration with modified random field approach. Engineering Geology, 2021, 288, 106138.                                                                         | 6.3 | 43        |
| 10 | UAV photogrammetry-based remote sensing and preliminary assessment of the behavior of a landslide<br>in Guizhou, China. Engineering Geology, 2021, 289, 106172.                                                               | 6.3 | 47        |
| 11 | The role of the geological uncertainty in a geotechnical design – A retrospective view of Freeway No.<br>3 Landslide in Northern Taiwan. Engineering Geology, 2021, 291, 106233.                                              | 6.3 | 17        |
| 12 | Probabilistic back analysis for improved reliability of geotechnical predictions considering<br>parameters uncertainty, model bias, and observation error. Tunnelling and Underground Space<br>Technology, 2021, 115, 104051. | 6.2 | 19        |
| 13 | Coupled characterization of stratigraphic and geo-properties uncertainties – A conditional random field approach. Engineering Geology, 2021, 294, 106348.                                                                     | 6.3 | 48        |
| 14 | The Role of Geological Uncertainty in a Geotechnical Design—A Retrospective View of Freeway No. 3<br>Landslide in Northern Taiwan. , 2021, , .                                                                                |     | 1         |
| 15 | Assessing error in the 3D discontinuity-orientation distribution estimated by the Fouché method. Computers and Geotechnics, 2020, 119, 103293.                                                                                | 4.7 | 6         |
| 16 | Stratigraphic uncertainty modelling with random field approach. Computers and Geotechnics, 2020, 125, 103681.                                                                                                                 | 4.7 | 62        |
| 17 | Fractile-based method for selecting characteristic values for geotechnical design with LRFD. Soils and Foundations, 2020, 60, 115-128.                                                                                        | 3.1 | 2         |
| 18 | Modified robust geotechnical design approach based on the sensitivity of reliability index.<br>Probabilistic Engineering Mechanics, 2020, 60, 103049.                                                                         | 2.7 | 8         |

| #  | Article                                                                                                                                                                                                               | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Optimization design of stabilizing piles in slopes considering spatial variability. Acta Geotechnica, 2020, 15, 3243-3259.                                                                                            | 5.7 | 45        |
| 20 | Geohazards in the three Gorges Reservoir Area, China – Lessons learned from decades of research.<br>Engineering Geology, 2019, 261, 105267.                                                                           | 6.3 | 393       |
| 21 | Assessing Initial Stiffness Models for Laterally Loaded Piles in Undrained Clay: Robust Design<br>Perspective. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2019, 145, .                          | 3.0 | 8         |
| 22 | Loess geohazards research in China: Advances and challenges for mega engineering projects.<br>Engineering Geology, 2019, 251, 1-10.                                                                                   | 6.3 | 146       |
| 23 | Mitigation of liquefaction hazard by dynamic compaction — a random field perspective. Canadian<br>Geotechnical Journal, 2019, 56, 1803-1815.                                                                          | 2.8 | 16        |
| 24 | Probabilistic analysis and design of stabilizing piles in slope considering stratigraphic uncertainty.<br>Engineering Geology, 2019, 259, 105162.                                                                     | 6.3 | 87        |
| 25 | Assessing effect of dynamic compaction on liquefaction potential using statistical methods – a case<br>study. Georisk, 2019, 13, 341-348.                                                                             | 3.5 | 6         |
| 26 | Multiobjective optimizationâ€based design of stabilizing piles in earth slopes. International Journal for<br>Numerical and Analytical Methods in Geomechanics, 2019, 43, 1516-1536.                                   | 3.3 | 14        |
| 27 | Probabilistic methods for unified treatment of geotechnical and geological uncertainties in a geotechnical analysis. Engineering Geology, 2019, 249, 148-161.                                                         | 6.3 | 118       |
| 28 | Assessing characteristic value selection methods for design with load and resistance factor design (LRFD) — design robustness perspective. Canadian Geotechnical Journal, 2019, 56, 1475-1485.                        | 2.8 | 9         |
| 29 | A new framework for characterizing landslide deformation: a case study of the Yu-Kai highway<br>landslide in Guizhou, China. Bulletin of Engineering Geology and the Environment, 2019, 78, 4291-4309.                | 3.5 | 8         |
| 30 | A hybrid framework for developing empirical model for seismic deformations of anchored sheetpile<br>bulkheads. Soil Dynamics and Earthquake Engineering, 2019, 116, 192-204.                                          | 3.8 | 6         |
| 31 | What we have learned from the 2008 Wenchuan Earthquake and its aftermath: A decade of research and challenges. Engineering Geology, 2018, 241, 25-32.                                                                 | 6.3 | 173       |
| 32 | Probabilistic analysis of tunnel longitudinal performance based upon conditional random field simulation of soil properties. Tunnelling and Underground Space Technology, 2018, 73, 1-14.                             | 6.2 | 92        |
| 33 | Random field-based regional liquefaction hazard mapping — data inference and model verification<br>using a synthetic digital soil field. Bulletin of Engineering Geology and the Environment, 2018, 77,<br>1273-1286. | 3.5 | 17        |
| 34 | Model selection in geological and geotechnical engineering in the face of uncertainty - Does a complex model always outperform a simple model?. Engineering Geology, 2018, 242, 184-196.                              | 6.3 | 53        |
| 35 | Optimization-Based Design of Stabilizing Piles. , 2018, , 45-53.                                                                                                                                                      |     | 0         |
| 36 | Integration of Heterogeneous Data for Multiscale Regional Liquefaction Settlement Mapping. , 2018, , .                                                                                                                |     | 0         |

| #  | Article                                                                                                                                                                                                               | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Bi-objective Optimization of Site Investigation Program for Liquefaction Hazard Mapping. , 2018, , 86-93.                                                                                                             |     | 0         |
| 38 | Case Histories of Liquefaction-Induced Building Damage–Focusing on the 22 February 2011<br>Christchurch Earthquake. , 2018, , .                                                                                       |     | 1         |
| 39 | Probabilistic Assessment and Mapping of Liquefaction Hazard: From Site-Specific Analysis to Regional Mapping. , 2018, , 1-16.                                                                                         |     | Ο         |
| 40 | Simplified-robust geotechnical design of soldier pile–anchor tieback shoring system for deep excavation. Marine Georesources and Geotechnology, 2017, 35, 157-169.                                                    | 2.1 | 17        |
| 41 | Reliability-based robust geotechnical design using Monte Carlo simulation. Bulletin of Engineering<br>Geology and the Environment, 2017, 76, 1217-1227.                                                               | 3.5 | 29        |
| 42 | Optimization of site investigation program for improved statistical characterization of geotechnical property based on random field theory. Bulletin of Engineering Geology and the Environment, 2017, 76, 1021-1035. | 3.5 | 47        |
| 43 | On the spatial variability of CPT-based geotechnical parameters for regional liquefaction evaluation.<br>Soil Dynamics and Earthquake Engineering, 2017, 95, 153-166.                                                 | 3.8 | 29        |
| 44 | Subdomain sampling methods – Efficient algorithm for estimating failure probability. Structural<br>Safety, 2017, 66, 62-73.                                                                                           | 5.3 | 20        |
| 45 | Regional Liquefaction Mapping Accounting for Multiscale Spatial Variability of Soil Parameters with<br>Geological Constraints. , 2017, , .                                                                            |     | 1         |
| 46 | Site Characterization in Geotechnical Engineering—Does a Random Field Model Always Outperform a<br>Random Variable Model?. , 2017, , .                                                                                |     | 0         |
| 47 | Bayesian Methods for Geotechnical Applicationsâ $\in$ "A Practical Guide. , 2017, , .                                                                                                                                 |     | 19        |
| 48 | Probabilistic Methods for Assessing Soil Liquefaction Potential and Effect. , 2017, , .                                                                                                                               |     | 5         |
| 49 | Practical Robust Geotechnical Design of Supported Excavations—A Case History of Excavation in<br>Taiwan. , 2017, , .                                                                                                  |     | Ο         |
| 50 | Verification of Random Field-Based Liquefaction Mapping Using a Synthetic Digital Soil Field. , 2017, , .                                                                                                             |     | 1         |
| 51 | Total Failure Probability of a Slope at a Given Site in a Seismic-Prone Zone in a Specified Exposure Time.<br>, 2017, , .                                                                                             |     | Ο         |
| 52 | Calibration of resistance factor for design of pile foundations considering feasibility robustness.<br>Computers and Geotechnics, 2017, 81, 229-238.                                                                  | 4.7 | 8         |
| 53 | Response surface-based robust geotechnical design of supported excavation – spreadsheet-based solution. Georisk, 2017, 11, 90-102.                                                                                    | 3.5 | 11        |
| 54 | Bayesian Updating of a Spatially Varied Soil Property for Enhancing Reliability in Drilled Shaft Design. ,<br>2016, , .                                                                                               |     | 1         |

| #  | Article                                                                                                                                                                                                          | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Simplified procedure for reliability-based robust geotechnical design of drilled shafts in clay using spreadsheet. Georisk, 2016, 10, 121-134.                                                                   | 3.5 | 4         |
| 56 | Predicting liquefaction probability based on shear wave velocity: an update. Bulletin of Engineering<br>Geology and the Environment, 2016, 75, 1199-1214.                                                        | 3.5 | 32        |
| 57 | Probabilistic and spatial assessment of liquefaction-induced settlements through multiscale random field models. Engineering Geology, 2016, 211, 135-149.                                                        | 6.3 | 36        |
| 58 | Extended Kalman Filter for the Inverse Analysis of a Supported Excavation Based on Field Monitoring Data for Improving Predictions of Ground Responses. , 2016, , .                                              |     | 0         |
| 59 | R-LRFD: Load and resistance factor design considering robustness. Computers and Geotechnics, 2016, 74, 74-87.                                                                                                    | 4.7 | 40        |
| 60 | Probabilistic analysis of responses of cantilever wall-supported excavations in sands considering vertical spatial variability. Computers and Geotechnics, 2016, 75, 182-191.                                    | 4.7 | 43        |
| 61 | Numerical integration method for computing reliability index of geotechnical system. Georisk, 2016, 10, 109-120.                                                                                                 | 3.5 | 7         |
| 62 | New Sampling Method and Procedures for Estimating Failure Probability. Journal of Engineering Mechanics - ASCE, 2016, 142, .                                                                                     | 2.9 | 15        |
| 63 | Calibration of empirical models considering model fidelity and model robustness — Focusing on predictions of liquefaction-induced settlements. Engineering Geology, 2016, 203, 168-177.                          | 6.3 | 35        |
| 64 | CPT-Based Evaluation of Liquefaction Potential Accounting for Soil Spatial Variability at Multiple<br>Scales. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2016, 142, .                      | 3.0 | 33        |
| 65 | Robust Design Optimization Applied to Braced Excavations. , 2015, , .                                                                                                                                            |     | 0         |
| 66 | Reliability-Based Robust Geotechnical Design of Rock Bolts for Slope Stabilization. , 2015, , .                                                                                                                  |     | 1         |
| 67 | <i>R</i> -LRFD: <i>Robust</i> Load and Resistance Factor Design. , 2015, , .                                                                                                                                     |     | 0         |
| 68 | Reliability-based Assessment of Stability of Slopes. IOP Conference Series: Earth and Environmental<br>Science, 2015, 26, 012006.                                                                                | 0.3 | 5         |
| 69 | Improved shield tunnel design methodology incorporating design robustness. Canadian Geotechnical<br>Journal, 2015, 52, 1575-1591.                                                                                | 2.8 | 18        |
| 70 | Cone penetration test (CPT)-based stratigraphic profiling using the wavelet transform modulus maxima method. Canadian Geotechnical Journal, 2015, 52, 1993-2007.                                                 | 2.8 | 58        |
| 71 | Permanent deformation characteristics of saturated sand under cyclic loading. Canadian<br>Geotechnical Journal, 2015, 52, 795-807.                                                                               | 2.8 | 84        |
| 72 | Simplified procedure for finite element analysis of the longitudinal performance of shield tunnels considering spatial soil variability in longitudinal direction. Computers and Geotechnics, 2015, 64, 132-145. | 4.7 | 92        |

| #  | Article                                                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Efficient Robust Geotechnical Design of Drilled Shafts in Clay Using a Spreadsheet. Journal of<br>Geotechnical and Geoenvironmental Engineering - ASCE, 2015, 141, .                                                                                                 | 3.0 | 19        |
| 74 | Robust Geotechnical Design of Earth Slopes Using Fuzzy Sets. Journal of Geotechnical and<br>Geoenvironmental Engineering - ASCE, 2015, 141, .                                                                                                                        | 3.0 | 57        |
| 75 | Improved analytical model for circumferential behavior of jointed shield tunnels considering the<br>longitudinal differential settlement. Tunnelling and Underground Space Technology, 2015, 45, 153-165.                                                            | 6.2 | 33        |
| 76 | Robust design in geotechnical engineering – an update. Georisk, 2014, 8, 217-234.                                                                                                                                                                                    | 3.5 | 32        |
| 77 | Analyses of braced excavation considering parameter uncertainties using a finite element code.<br>Journal of the Chinese Institute of Engineers, Transactions of the Chinese Institute of<br>Engineers,Series A/Chung-kuo Kung Ch'eng Hsuch K'an, 2014, 37, 141-151. | 1.1 | 10        |
| 78 | Moment Methods for Assessing the Probability of Serviceability Failure in Braced Excavations. , 2014, , .                                                                                                                                                            |     | 1         |
| 79 | Optimization of Site Exploration Effort to Improve the Accuracy of Tunneling-Induced Ground Settlement Prediction in Soft Clays. , 2014, , .                                                                                                                         |     | 0         |
| 80 | Robust Design of Braced Excavations Using Multiobjective Optimization-Focusing on Prevention of<br>Damage to Adjacent Buildings. , 2014, , .                                                                                                                         |     | 1         |
| 81 | Effect of Spatial Variability on the Reliability-Based Design of Drilled Shafts. , 2014, , .                                                                                                                                                                         |     | 0         |
| 82 | Effects of Principal Stress Rotation on the Cumulative Deformation of Normally Consolidated Soft<br>Clay under Subway Traffic Loading. Journal of Geotechnical and Geoenvironmental Engineering -<br>ASCE, 2014, 140, .                                              | 3.0 | 96        |
| 83 | Optimization of site exploration program for improved prediction of tunneling-induced ground settlement in clays. Computers and Geotechnics, 2014, 56, 69-79.                                                                                                        | 4.7 | 106       |
| 84 | Robust design of rock slopes with multiple failure modes: modeling uncertainty of estimated parameter statistics with fuzzy number. Environmental Earth Sciences, 2014, 72, 2957-2969.                                                                               | 2.7 | 27        |
| 85 | Robust geotechnical design of braced excavations in clays. Structural Safety, 2014, 49, 37-44.                                                                                                                                                                       | 5.3 | 43        |
| 86 | Robust geotechnical design of shield-driven tunnels. Computers and Geotechnics, 2014, 56, 191-201.                                                                                                                                                                   | 4.7 | 55        |
| 87 | Probabilistic Inverse Analysis of Excavation-Induced Wall and Ground Responses for Assessing Damage<br>Potential of Adjacent Buildings. Geotechnical and Geological Engineering, 2014, 32, 273-285.                                                                  | 1.7 | 27        |
| 88 | Gradient-based design robustness measure for robust geotechnical design. Canadian Geotechnical<br>Journal, 2014, 51, 1331-1342.                                                                                                                                      | 2.8 | 45        |
| 89 | Robust Geotechnical Design of Shield-Driven Tunnels Using Fuzzy Sets. , 2014, , .                                                                                                                                                                                    |     | 4         |
| 90 | Simplified procedure for estimation of liquefaction-induced settlement and site-specific probabilistic settlement exceedance curve using cone penetration test (CPT). Canadian Geotechnical Journal, 2013, 50, 1055-1066.                                            | 2.8 | 56        |

| #   | Article                                                                                                                                                                                                                                                                                    | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Confidence level-based robust design of cantilever retaining walls in sand. Computers and Geotechnics, 2013, 52, 16-27.                                                                                                                                                                    | 4.7 | 12        |
| 92  | Probabilistic back analysis of slope failure – A case study in Taiwan. Computers and Geotechnics, 2013, 51, 12-23.                                                                                                                                                                         | 4.7 | 100       |
| 93  | Bootstrapping for Characterizing the Effect of Uncertainty in Sample Statistics for Braced Excavations. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2013, 139, 13-23.                                                                                                 | 3.0 | 54        |
| 94  | Reliability-based design of rock slopes — A new perspective on design robustness. Engineering<br>Geology, 2013, 154, 56-63.                                                                                                                                                                | 6.3 | 80        |
| 95  | Robust Geotechnical Design of Drilled Shafts in Sand: New Design Perspective. Journal of<br>Geotechnical and Geoenvironmental Engineering - ASCE, 2013, 139, 2007-2019.                                                                                                                    | 3.0 | 65        |
| 96  | Reliability-based robust geotechnical design of spread foundations using multi-objective genetic algorithm. Computers and Geotechnics, 2013, 48, 96-106.                                                                                                                                   | 4.7 | 80        |
| 97  | Bayesian Updating of Soil Parameters for Braced Excavations Using Field Observations. Journal of<br>Geotechnical and Geoenvironmental Engineering - ASCE, 2013, 139, 395-406.                                                                                                              | 3.0 | 134       |
| 98  | Updating Uncertain Soil Parameters by Maximum Likelihood Method for Predicting Maximum Ground and Wall Movements in Braced Excavations. , 2013, , .                                                                                                                                        |     | 5         |
| 99  | Assessing SPT-based probabilistic models for liquefaction potential evaluation: a 10-year update.<br>Georisk, 2013, 7, 137-150.                                                                                                                                                            | 3.5 | 20        |
| 100 | Effect of Spatial Variability on Probability-Based Design of Excavations against Basal-Heave. , 2012, , .                                                                                                                                                                                  |     | 0         |
| 101 | Reliability-Based Design for Basal Heave Stability of Deep Excavations in Spatially Varying Soils. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2012, 138, 594-603.                                                                                                    | 3.0 | 44        |
| 102 | Evaluation of Soil Variability Influence on Deep Excavation Analysis–Simplified Approach. , 2012, , .                                                                                                                                                                                      |     | 4         |
| 103 | Simplified Approach for Reliability-Based Design against Basal-Heave Failure in Braced Excavations<br>Considering Spatial Effect. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2012,<br>138, 441-450.                                                                  | 3.0 | 48        |
| 104 | Reliability Analysis of Rock Wedge Stability: Knowledge-Based Clustered Partitioning Approach.<br>Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2012, 138, 700-708.                                                                                                     | 3.0 | 36        |
| 105 | Probabilistic version of the Robertson and Wride method for liquefaction evaluation: development and application. Canadian Geotechnical Journal, 2012, 49, 27-44.                                                                                                                          | 2.8 | 55        |
| 106 | Model developments of long-term aged asphalt binders. Construction and Building Materials, 2012, 37, 248-256.                                                                                                                                                                              | 7.2 | 19        |
| 107 | Reply to comments by JP Wang and Duruo Huang on "Annual probability and return period of soil<br>liquefaction in Yuanlin, Taiwan attributed to Chelungpu Fault and Changhua Fault―by Lee et al. (2010)<br>in Engineering Geology, 114: 343–353. Engineering Geology, 2012, 149-150, 97-98. | 6.3 | 0         |
| 108 | Reliability analysis of basal-heave in a braced excavation in a 2-D random field. Computers and Geotechnics, 2012, 39, 27-37.                                                                                                                                                              | 4.7 | 55        |

| #   | Article                                                                                                                                                                                                     | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Bayesian updating of KJHH model for prediction of maximum ground settlement in braced excavations using centrifuge data. Computers and Geotechnics, 2012, 44, 1-8.                                          | 4.7 | 46        |
| 110 | New models for probability of liquefaction using standard penetration tests based on an updated database of case histories. Engineering Geology, 2012, 133-134, 85-93.                                      | 6.3 | 64        |
| 111 | Fully Probabilistic Framework for Evaluating Excavation-Induced Damage Potential of Adjacent<br>Buildings. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2011, 137, 130-139.             | 3.0 | 36        |
| 112 | Probability of serviceability failure in a braced excavation in a spatially random field: Fuzzy finite element approach. Computers and Geotechnics, 2011, 38, 1031-1040.                                    | 4.7 | 65        |
| 113 | Rainfall-based criteria for assessing slump rate of mountainous highway slopes: A case study of slopes along Highway 18 in Alishan, Taiwan. Engineering Geology, 2011, 118, 63-74.                          | 6.3 | 28        |
| 114 | Wall and Ground Responses in a Braced Excavation Considering Spatial Variability. , 2011, , .                                                                                                               |     | 1         |
| 115 | Reliability-Based Design for Basal Heave in an Excavation Considering Spatial Variability. , 2010, , .                                                                                                      |     | 5         |
| 116 | Annual probability and return period of soil liquefaction in Yuanlin, Taiwan attributed to Chelungpu<br>Fault and Changhua Fault. Engineering Geology, 2010, 114, 343-353.                                  | 6.3 | 4         |
| 117 | Probabilistic framework for assessing liquefaction hazard at a given site in a specified exposure time using standard penetration testing. Canadian Geotechnical Journal, 2010, 47, 674-687.                | 2.8 | 14        |
| 118 | Updating of Soil Parameters for Improving the Accuracy of the Excavation-Induced Building Damage Assessment. , 2009, , .                                                                                    |     | 0         |
| 119 | Modeling small-strain behavior of Taipei clays for finite element analysis of braced excavations.<br>Computers and Geotechnics, 2009, 36, 304-319.                                                          | 4.7 | 81        |
| 120 | Neural network-based model for assessing failure potential of highway slopes in the Alishan, Taiwan<br>Area: Pre- and post-earthquake investigation. Engineering Geology, 2009, 104, 280-289.               | 6.3 | 67        |
| 121 | Framework for probabilistic assessment of landslide: a case study of El Berrinche. Environmental<br>Earth Sciences, 2009, 59, 489-499.                                                                      | 2.7 | 11        |
| 122 | Simplified DMT-based methods for evaluating liquefaction resistance of soils. Engineering Geology, 2009, 103, 13-22.                                                                                        | 6.3 | 13        |
| 123 | Assessing probability of surface manifestation of liquefaction at a given site in a given exposure time using CPTU. Engineering Geology, 2009, 104, 223-231.                                                | 6.3 | 17        |
| 124 | Framework for assessing probability of exceeding a specified liquefaction-induced settlement at a given site in a given exposure time. Engineering Geology, 2009, 108, 24-35.                               | 6.3 | 13        |
| 125 | Prediction of Fatigue Life of Rubberized Asphalt Concrete Mixtures Containing Reclaimed Asphalt<br>Pavement Using Artificial Neural Networks. Journal of Materials in Civil Engineering, 2009, 21, 253-261. | 2.9 | 95        |
| 126 | Simplified Model for Evaluating Damage Potential of Buildings Adjacent to a Braced Excavation.<br>Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2009, 135, 1823-1835.                    | 3.0 | 78        |

| #   | Article                                                                                                                                                                                                            | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Calibration of liquefaction potential index: A re-visit focusing on a new CPTU model. Engineering<br>Geology, 2008, 102, 19-30.                                                                                    | 6.3 | 29        |
| 128 | Reliability Analysis and Updating of Excavation-Induced Ground Settlement for Building Serviceability<br>Assessment. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2008, 134, 1448-1458.        | 3.0 | 87        |
| 129 | Simplified Procedure for Developing Joint Distribution of amax and Mw for Probabilistic Liquefaction<br>Hazard Analysis. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2008, 134,<br>1050-1058. | 3.0 | 51        |
| 130 | Model Uncertainty in Normalized Shear Modulus and Damping Relationships. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2008, 134, 24-36.                                                        | 3.0 | 13        |
| 131 | Empirical Model for Liquefaction Resistance of Soils Based on Artificial Neural Network Learning of<br>Case Histories. , 2008, , .                                                                                 |     | 1         |
| 132 | CPTu Simplified Stress-Based Model for Evaluating Soil Liquefaction Potential. Soils and Foundations, 2008, 48, 755-770.                                                                                           | 3.1 | 26        |
| 133 | Evaluation of a simplified small-strain soil model for analysis of excavation-induced movements.<br>Canadian Geotechnical Journal, 2007, 44, 726-736.                                                              | 2.8 | 72        |
| 134 | Index Properties-Based Criteria for Liquefaction Susceptibility of Clayey Soils: A Critical Assessment.<br>Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2007, 133, 110-115.                    | 3.0 | 23        |
| 135 | Simplified Model for Wall Deflection and Ground-Surface Settlement Caused by Braced Excavation in Clays. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2007, 133, 731-747.                      | 3.0 | 249       |
| 136 | Rutting Resistance of Rubberized Asphalt Concrete Pavements Containing Reclaimed Asphalt Pavement<br>Mixtures. Journal of Materials in Civil Engineering, 2007, 19, 475-483.                                       | 2.9 | 238       |
| 137 | A neural network approach to estimating deflection of diaphragm walls caused by excavation in clays.<br>Computers and Geotechnics, 2007, 34, 385-396.                                                              | 4.7 | 73        |
| 138 | Assessment of liquefaction hazards in Charleston quadrangle, South Carolina. Engineering Geology, 2007, 92, 59-72.                                                                                                 | 6.3 | 24        |
| 139 | Estimation of Wall Deflection in Braced Excavation in Clays Using Artificial Neural Networks. , 2006, ,<br>·                                                                                                       |     | 1         |
| 140 | First-Order Reliability Method for Probabilistic Liquefaction Triggering Analysis Using CPT. Journal of<br>Geotechnical and Geoenvironmental Engineering - ASCE, 2006, 132, 337-350.                               | 3.0 | 108       |
| 141 | Estimating severity of liquefaction-induced damage near foundation. Soil Dynamics and Earthquake<br>Engineering, 2005, 25, 403-411.                                                                                | 3.8 | 27        |
| 142 | Liquefaction in the Chi-Chi Earthquake-Effect of Fines and Capping Non-Liquefiable Layers. Soils and Foundations, 2005, 45, 89-101.                                                                                | 3.1 | 24        |
| 143 | Model Uncertainty of Shear Wave Velocity-Based Method for Liquefaction Potential Evaluation.<br>Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2005, 131, 1274-1282.                             | 3.0 | 32        |
| 144 | Normalized Shear Modulus and Material Damping Ratio Relationships. Journal of Geotechnical and<br>Geoenvironmental Engineering - ASCE, 2005, 131, 453-464.                                                         | 3.0 | 284       |

| #   | Article                                                                                                                                                                                                             | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Reliability Analysis of Soil Liquefaction Potential. , 2005, , 1.                                                                                                                                                   |     | 2         |
| 146 | Liquefaction-induced ground failure: a study of the Chi-Chi earthquake cases. Engineering Geology, 2004, 71, 141-155.                                                                                               | 6.3 | 34        |
| 147 | Comparing liquefaction evaluation methods using penetration-VS relationships. Soil Dynamics and Earthquake Engineering, 2004, 24, 713-721.                                                                          | 3.8 | 101       |
| 148 | Characterization of the uncertainty of the Robertson and Wride model for liquefaction potential evaluation. Soil Dynamics and Earthquake Engineering, 2004, 24, 771-780.                                            | 3.8 | 35        |
| 149 | Guide for Shear-Wave-Based Liquefaction Potential Evaluation. Earthquake Spectra, 2004, 20, 285-308.                                                                                                                | 3.1 | 95        |
| 150 | Simplified Cone Penetration Test-based Method for Evaluating Liquefaction Resistance of Soils.<br>Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2003, 129, 66-80.                                | 3.0 | 160       |
| 151 | Assessing Probability-based Methods for Liquefaction Potential Evaluation. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2002, 128, 580-589.                                                     | 3.0 | 186       |
| 152 | Assessing CPT-based methods for liquefaction evaluation with emphasis on the cases from the Chi-Chi,<br>Taiwan, earthquake. Soil Dynamics and Earthquake Engineering, 2002, 22, 241-258.                            | 3.8 | 28        |
| 153 | Predicting Geotechnical Parameters of Sands from CPT Measurements Using Neural Networks.<br>Computer-Aided Civil and Infrastructure Engineering, 2002, 17, 31-42.                                                   | 9.8 | 14        |
| 154 | Probabilistic Framework for Liquefaction Potential by Shear Wave Velocity. Journal of Geotechnical<br>and Geoenvironmental Engineering - ASCE, 2001, 127, 670-678.                                                  | 3.0 | 63        |
| 155 | Liquefaction performance of soils at the site of a partially completed ground improvement project<br>during the 1999 Chi-Chi earthquake in Taiwan. Canadian Geotechnical Journal, 2001, 38, 1241-1253.              | 2.8 | 16        |
| 156 | Estimation of Liquefaction-Induced Vertical Displacements Using Multilinear Regression Analysis. ,<br>2000, , 92.                                                                                                   |     | 2         |
| 157 | A rational method for development of limit state for liquefaction evaluation based on shear wave velocity measurements. International Journal for Numerical and Analytical Methods in Geomechanics, 2000, 24, 1-27. | 3.3 | 24        |
| 158 | VERTICAL CAPACITY OF PILES USING FUZZY SETS. Civil Engineering and Environmental Systems, 2000, 17, 237-262.                                                                                                        | 0.9 | 5         |
| 159 | Shear modulus and damping ratio characteristics of gravelly deposits. Canadian Geotechnical<br>Journal, 2000, 37, 638-651.                                                                                          | 2.8 | 42        |
| 160 | Assessing Probabilistic Methods for Liquefaction Potential Evaluation. , 2000, , 148.                                                                                                                               |     | 18        |
| 161 | Risk-based liquefaction potential evaluation using standard penetration tests. Canadian Geotechnical<br>Journal, 2000, 37, 1195-1208.                                                                               | 2.8 | 74        |
| 162 | Calibration of SPT- and CPT-Based Liquefaction Evaluation Methods. , 2000, , 49.                                                                                                                                    |     | 35        |

| #   | Article                                                                                                                                                                  | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | CPTâ€Based Liquefaction Evaluation Using Artificial Neural Networks. Computer-Aided Civil and<br>Infrastructure Engineering, 1999, 14, 221-229.                          | 9.8 | 90        |
| 164 | Appraising cone penetration test based liquefaction resistance evaluation methods: artificial neural network approach. Canadian Geotechnical Journal, 1999, 36, 443-454. | 2.8 | 67        |
| 165 | Reliability-Based Method for Assessing Liquefaction Potential of Soils. Journal of Geotechnical and<br>Geoenvironmental Engineering - ASCE, 1999, 125, 684-689.          | 3.0 | 100       |
| 166 | Subgrade reaction and load-settlement characteristics of gravelly cobble deposits by plate-load tests.<br>Canadian Geotechnical Journal, 1998, 35, 801-810.              | 2.8 | 21        |
| 167 | Modelling and analysis of non-random uncertainties—fuzzy-set approach. International Journal for<br>Numerical and Analytical Methods in Geomechanics, 1992, 16, 335-350. | 3.3 | 26        |
| 168 | CPTu-SPT correlation analyses based on pairwise data in Southwestern Taiwan. Georisk, 0, , 1-18.                                                                         | 3.5 | 0         |