
Xuan Cao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11469611/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nuclear softening expedites interstitial cell migration in fibrous networks and dense connective tissues. Science Advances, 2020, 6, eaax5083.	10.3	36
2	Balance of mechanical forces drives endothelial gap formation and may facilitate cancer and immune-cell extravasation. PLoS Computational Biology, 2019, 15, e1006395.	3.2	53
3	Fully Printed All-Solid-State Organic Flexible Artificial Synapse for Neuromorphic Computing. ACS Applied Materials & Interfaces, 2019, 11, 16749-16757.	8.0	70
4	Maturation State and Matrix Microstructure Regulate Interstitial Cell Migration in Dense Connective Tissues. Scientific Reports, 2018, 8, 3295.	3.3	31
5	Matching material and cellular timescales maximizes cell spreading on viscoelastic substrates. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E2686-E2695.	7.1	183
6	Highly Sensitive and Wearable In ₂ O ₃ Nanoribbon Transistor Biosensors with Integrated On-Chip Gate for Glucose Monitoring in Body Fluids. ACS Nano, 2018, 12, 1170-1178.	14.6	185
7	Room-Temperature Pressure Synthesis of Layered Black Phosphorus–Graphene Composite for Sodium-Ion Battery Anodes. ACS Nano, 2018, 12, 8323-8329.	14.6	83
8	Single-step flash-heat synthesis of red phosphorus/graphene flame-retardant composite as flexible anodes for sodium-ion batteries. Nano Research, 2018, 11, 3780-3790.	10.4	30
9	Top-Contact Self-Aligned Printing for High-Performance Carbon Nanotube Thin-Film Transistors with Sub-Micron Channel Length. ACS Nano, 2017, 11, 2008-2014.	14.6	38
10	Multiscale model predicts increasing focal adhesion size with decreasing stiffness in fibrous matrices. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E4549-E4555.	7.1	88
11	Red Phosphorus Nanodots on Reduced Graphene Oxide as a Flexible and Ultra-Fast Anode for Sodium-Ion Batteries. ACS Nano, 2017, 11, 5530-5537.	14.6	201
12	Review of Electronics Based on Single-Walled Carbon Nanotubes. Topics in Current Chemistry, 2017, 375, 75.	5.8	43
13	High-Performance Sub-Micrometer Channel WSe ₂ Field-Effect Transistors Prepared Using a Flood–Dike Printing Method. ACS Nano, 2017, 11, 12536-12546.	14.6	7
14	A Chemomechanical Model for Nuclear Morphology and Stresses during Cell Transendothelial Migration. Biophysical Journal, 2016, 111, 1541-1552.	0.5	112
15	Fully Screen-Printed, Large-Area, and Flexible Active-Matrix Electrochromic Displays Using Carbon Nanotube Thin-Film Transistors. ACS Nano, 2016, 10, 9816-9822.	14.6	183
16	Highly Sensitive and Quick Detection of Acute Myocardial Infarction Biomarkers Using In ₂ O ₃ Nanoribbon Biosensors Fabricated Using Shadow Masks. ACS Nano, 2016, 10, 10117-10125.	14.6	69
17	Carbon Nanotube Macroelectronics for Active Matrix Polymer-Dispersed Liquid Crystal Displays. ACS Nano, 2016, 10, 10068-10074.	14.6	44
18	Radio frequency transistors based on ultra-high purity semiconducting carbon nanotubes with superior extrinsic maximum oscillation frequency. Nano Research, 2016, 9, 363-371.	10.4	26

XUAN CAO

#	Article	IF	CITATIONS
19	Harnessing cellular-derived forces in self-assembled microtissues to control the synthesis and alignment of ECM. Biomaterials, 2016, 77, 120-129.	11.4	34
20	Imperceptible and Ultraflexible p-Type Transistors and Macroelectronics Based on Carbon Nanotubes. ACS Nano, 2016, 10, 199-206.	14.6	43
21	Normal and Fibrotic Rat Livers Demonstrate Shear Strain Softening and Compression Stiffening: A Model for Soft Tissue Mechanics. PLoS ONE, 2016, 11, e0146588.	2.5	97
22	Threshold voltage tuning and printed complementary transistors and inverters based on thin films of carbon nanotubes and indium zinc oxide. Nano Research, 2015, 8, 1159-1168.	10.4	22
23	A Chemomechanical Model of Matrix and Nuclear Rigidity Regulation of Focal Adhesion Size. Biophysical Journal, 2015, 109, 1807-1817.	0.5	49
24	Screen Printing as a Scalable and Low-Cost Approach for Rigid and Flexible Thin-Film Transistors Using Separated Carbon Nanotubes. ACS Nano, 2014, 8, 12769-12776.	14.6	179