Craig Frear

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11468609/publications.pdf

Version: 2024-02-01

361413 501196 1,937 28 20 28 h-index citations g-index papers 28 28 28 2777 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A laboratory study of producing docosahexaenoic acid from biodiesel-waste glycerol by microalgal fermentation. Process Biochemistry, 2007, 42, 1537-1545.	3.7	332
2	Synthesis of Fe ₃ O ₄ /Polyacrylonitrile Composite Electrospun Nanofiber Mat for Effective Adsorption of Tetracycline. ACS Applied Materials & Samp; Interfaces, 2015, 7, 14573-14583.	8.0	256
3	The effects of the antibiotics ampicillin, florfenicol, sulfamethazine, and tylosin on biogas production and their degradation efficiency during anaerobic digestion. Bioresource Technology, 2013, 149, 244-252.	9.6	160
4	A simple methodology for rate-limiting step determination for anaerobic digestion of complex substrates and effect of microbial community ratio. Bioresource Technology, 2013, 134, 391-395.	9.6	143
5	Efficient anaerobic digestion of whole microalgae and lipid-extracted microalgae residues for methane energy production. Bioresource Technology, 2014, 161, 423-430.	9.6	136
6	Study of a two-stage growth of DHA-producing marine algae Schizochytrium limacinum SR21 with shifting dissolved oxygen level. Applied Microbiology and Biotechnology, 2009, 81, 1141-1148.	3.6	131
7	Effect of pyrolysis temperature on the yield and properties of bio-oils obtained from the auger pyrolysis of Douglas Fir wood. Journal of Analytical and Applied Pyrolysis, 2012, 93, 52-62.	5.5	94
8	Co-production of fumaric acid and chitin from a nitrogen-rich lignocellulosic material – dairy manure – using a pelletized filamentous fungus Rhizopus oryzae ATCC 20344. Bioresource Technology, 2008, 99, 5859-5866.	9.6	75
9	Ammonia recovery from anaerobic digester effluent through direct aeration. Chemical Engineering Journal, 2015, 279, 31-37.	12.7	75
10	Enhancing volatile fatty acid (VFA) and bio-methane production from lawn grass with pretreatment. Bioresource Technology, 2014, 162, 243-249.	9.6	60
11	Kinetic modeling of enzymatic hydrolysis of cellulose in differently pretreated fibers from dairy manure. Biotechnology and Bioengineering, 2008, 101, 441-451.	3.3	56
12	Kinetics of psychrophilic anaerobic sequencing batch reactor treating flushed dairy manure. Bioresource Technology, 2013, 131, 6-12.	9.6	48
13	Methanosarcina domination in anaerobic sequencing batch reactor at short hydraulic retention time. Bioresource Technology, 2013, 137, 41-50.	9.6	44
14	Kinetic and microbial analysis of methane production from dairy wastewater anaerobic digester under ammonia and salinity stresses. Journal of Cleaner Production, 2019, 219, 797-808.	9.3	44
15	pH shaped kinetic characteristics and microbial community of food waste hydrolysis and acidification. Biochemical Engineering Journal, 2019, 146, 52-59.	3.6	33
16	Anaerobic digestion of liquid dairy manure using a sequential continuousâ€stirred tank reactor system. Journal of Chemical Technology and Biotechnology, 2007, 82, 758-766.	3.2	32
17	Multiphase modeling of settling and suspension in anaerobic digester. Applied Energy, 2013, 111, 28-39.	10.1	29
18	Accumulation of long-chain fatty acids from Nannochloropsis salina enhanced by breaking microalgae cell wall under alkaline digestion. Renewable Energy, 2020, 149, 691-700.	8.9	28

#	Article	IF	CITATION
19	Production and characterization of H2S and PO43â ⁻ carbonaceous adsorbents from anaerobic digested fibers. Biomass and Bioenergy, 2019, 120, 339-349.	5.7	27
20	Charcoal from anaerobically digested dairy fiber for removal of hydrogen sulfide within biogas. Waste Management, 2018, 76, 374-382.	7.4	23
21	Biogas potential and microbial population distributions in flushed dairy manure and implications on anaerobic digestion technology. Journal of Chemical Technology and Biotechnology, 2011, 86, 145-152.	3.2	21
22	Anaerobic digestion of C1–C4 light oxygenated organic compounds derived from the torrefaction of lignocellulosic materials. Fuel Processing Technology, 2015, 131, 150-158.	7.2	20
23	Approaches for adding value to anaerobically digested dairy fiber. Renewable and Sustainable Energy Reviews, 2017, 72, 254-268.	16.4	15
24	Biomethane production from whole and extracted algae biomass: Long-term performance evaluation and microbial community dynamics. Renewable Energy, 2021, 170, 38-48.	8.9	15
25	Consolidated bioprocessing of microalgal biomass to carboxylates by a mixed culture of cow rumen bacteria using anaerobic sequencing batch reactor (ASBR). Bioresource Technology, 2016, 222, 517-522.	9.6	12
26	Biomethane Production from Pyrolytic Aqueous Phase: Biomass Acid Washing and Condensation Temperature Effect on the Bio-oil and Aqueous Phase Composition. Bioenergy Research, 2020, 13, 878-886.	3.9	11
27	Recycling separated liquid-effluent to dilute feedstock in anaerobic digestion of dairy manure. Energy, 2017, 119, 1144-1151.	8.8	10
28	Effects of different antibiotic operation modes on anaerobic digestion of dairy manure: Focus on microbial population dynamics. Journal of Environmental Chemical Engineering, 2021, 9, 105521.	6.7	7