List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1146844/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Structural Characterization of Flexible Proteins Using Small-Angle X-ray Scattering. Journal of the American Chemical Society, 2007, 129, 5656-5664.	6.6	1,080
2	A structural model for unfolded proteins from residual dipolar couplings and small-angle x-ray scattering. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 17002-17007.	3.3	413
3	<i>>Flexible-meccano:</i> a tool for the generation of explicit ensemble descriptions of intrinsically disordered proteins and their associated experimental observables. Bioinformatics, 2012, 28, 1463-1470.	1.8	324
4	Structural analysis of intrinsically disordered proteins by small-angle X-ray scattering. Molecular BioSystems, 2012, 8, 151-167.	2.9	291
5	Defining Long-Range Order and Local Disorder in Native α-Synuclein Using Residual Dipolar Couplings. Journal of the American Chemical Society, 2005, 127, 17968-17969.	6.6	223
6	Identification of slow correlated motions in proteins using residual dipolar and hydrogen-bond scalar couplings. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 13885-13890.	3.3	220
7	Highly Populated Turn Conformations in Natively Unfolded Tau Protein Identified from Residual Dipolar Couplings and Molecular Simulation. Journal of the American Chemical Society, 2007, 129, 5235-5243.	6.6	208
8	Domain Conformation of Tau Protein Studied by Solution Small-Angle X-ray Scattering. Biochemistry, 2008, 47, 10345-10353.	1.2	187
9	Human mitochondrial transcription factor A induces a U-turn structure in the light strand promoter. Nature Structural and Molecular Biology, 2011, 18, 1281-1289.	3.6	168
10	Quantitative Determination of the Conformational Properties of Partially Folded and Intrinsically Disordered Proteins Using NMR Dipolar Couplings. Structure, 2009, 17, 1169-1185.	1.6	160
11	Interaction of Human Complement with Sbi, a Staphylococcal Immunoglobulin-binding Protein. Journal of Biological Chemistry, 2008, 283, 17579-17593.	1.6	139
12	A Self-Consistent Description of the Conformational Behavior of Chemically Denatured Proteins from NMR and Small Angle Scattering. Biophysical Journal, 2009, 97, 2839-2845.	0.2	120
13	Dynamic interactions of proteins in complex networks: a more structured view. FEBS Journal, 2009, 276, 5390-5405.	2.2	104
14	Effect of interdomain dynamics on the structure determination of modular proteins by small-angle scattering. European Biophysics Journal, 2010, 39, 769-780.	1.2	102
15	Structural characterization of αâ€synuclein in an aggregation prone state. Protein Science, 2009, 18, 1840-1846.	3.1	97
16	PED in 2021: a major update of the protein ensemble database for intrinsically disordered proteins. Nucleic Acids Research, 2021, 49, D404-D411.	6.5	95
17	Peptide Binding Induces Large Scale Changes in Inter-domain Mobility in Human Pin1. Journal of Biological Chemistry, 2003, 278, 26174-26182.	1.6	87
18	Lipid binding by the Unique and SH3 domains of c-Src suggests a new regulatory mechanism. Scientific Reports, 2013, 3, 1295.	1.6	84

#	Article	IF	CITATIONS
19	ProtSA: a web application for calculating sequence specific protein solvent accessibilities in the unfolded ensemble. BMC Bioinformatics, 2009, 10, 104.	1.2	77
20	Structural characterization of intrinsically disordered proteins by the combined use of NMR and SAXS. Biochemical Society Transactions, 2012, 40, 955-962.	1.6	77
21	Dynamic interplay between catalytic and lectin domains of GalNAc-transferases modulates protein O-glycosylation. Nature Communications, 2015, 6, 6937.	5.8	77
22	Interpretation of 15N NMR relaxation data of globular proteins using hydrodynamic calculations with HYDRONMR. Journal of Biomolecular NMR, 2002, 23, 139-150.	1.6	76
23	Small-angle scattering studies of intrinsically disordered proteins and their complexes. Current Opinion in Structural Biology, 2017, 42, 15-23.	2.6	76
24	Structural Characterization of the Natively Unfolded N-Terminal Domain of Human c-Src Kinase: Insights into the Role of Phosphorylation of the Unique Domain. Journal of Molecular Biology, 2009, 391, 136-148.	2.0	74
25	Proteins in dynamic equilibrium. Nature, 2010, 468, 1046-1048.	13.7	74
26	The Unique Domain Forms a Fuzzy Intramolecular Complex in Src Family Kinases. Structure, 2017, 25, 630-640.e4.	1.6	72
27	Disentangling the complexity of low complexity proteins. Briefings in Bioinformatics, 2020, 21, 458-472.	3.2	70
28	Structure and Dynamics of Ribosomal Protein L12: An Ensemble Model Based on SAXS and NMR Relaxation. Biophysical Journal, 2010, 98, 2374-2382.	0.2	67
29	Structure of p15PAF–PCNA complex and implications for clamp sliding during DNA replication and repair. Nature Communications, 2015, 6, 6439.	5.8	65
30	Anisotropic Small Amplitude Peptide Plane Dynamics in Proteins from Residual Dipolar Couplings. Journal of the American Chemical Society, 2004, 126, 4907-4920.	6.6	64
31	Structural Characterization of Protein–Protein Complexes by Integrating Computational Docking with Small-angle Scattering Data. Journal of Molecular Biology, 2010, 403, 217-230.	2.0	64
32	Amino Acid Bulkiness Defines the Local Conformations and Dynamics of Natively Unfolded α-Synuclein and Tau. Journal of the American Chemical Society, 2007, 129, 3032-3033.	6.6	61
33	pyDockSAXS: protein–protein complex structure by SAXS and computational docking. Nucleic Acids Research, 2015, 43, W356-W361.	6.5	61
34	Low-Resolution Structures of Transient Proteinâ^'Protein Complexes Using Small-Angle X-ray Scattering. Journal of the American Chemical Society, 2009, 131, 4378-4386.	6.6	59
35	Residual Dipolar Couplings in Short Peptides Reveal Systematic Conformational Preferences of Individual Amino Acids. Journal of the American Chemical Society, 2006, 128, 13508-13514.	6.6	55
36	An Analytical Solution to the Problem of the Orientation of Rigid Particles by Planar Obstacles. Application to Membrane Systems and to the Calculation of Dipolar Couplings in Protein NMR Spectroscopy. Journal of the American Chemical Society, 2001, 123, 12037-12047.	6.6	54

#	Article	IF	CITATIONS
37	p15PAF Is an Intrinsically Disordered Protein with Nonrandom Structural Preferences at Sites of Interaction with Other Proteins. Biophysical Journal, 2014, 106, 865-874.	0.2	54
38	Indirect DNA Readout by an H-NS Related Protein: Structure of the DNA Complex of the C-Terminal Domain of Ler. PLoS Pathogens, 2011, 7, e1002380.	2.1	53
39	Molecular basis for fibroblast growth factor 23 O-glycosylation by GalNAc-T3. Nature Chemical Biology, 2020, 16, 351-360.	3.9	52
40	Interplay of Protein Disorder in Retinoic Acid Receptor Heterodimer and Its Corepressor Regulates Gene Expression. Structure, 2019, 27, 1270-1285.e6.	1.6	50
41	Structural Characterization of the Active and Inactive States of Src Kinase in Solution by Small-Angle X-ray Scattering. Journal of Molecular Biology, 2008, 376, 492-505.	2.0	49
42	Structural Analysis of Multi-component Amyloid Systems by Chemometric SAXS Data Decomposition. Structure, 2017, 25, 5-15.	1.6	49
43	Realistic Ensemble Models of Intrinsically Disordered Proteins Using a Structure-Encoding Coil Database. Structure, 2019, 27, 381-391.e2.	1.6	49
44	Sequence-Specific Solvent Accessibilities of Protein Residues in Unfolded Protein Ensembles. Biophysical Journal, 2006, 91, 4536-4543.	0.2	48
45	Macromolecular crowding in biological systems: hydrodynamics and NMR methods. Journal of Molecular Recognition, 2004, 17, 397-407.	1.1	47
46	Local Dynamic Amplitudes on the Protein Backbone from Dipolar Couplings: Toward the Elucidation of Slower Motions in Biomolecules. Journal of the American Chemical Society, 2004, 126, 7760-7761.	6.6	46
47	Structural Relationships Among the Ribosomal Stalk Proteins from the Three Domains of Life. Journal of Molecular Evolution, 2008, 67, 154-167.	0.8	46
48	Human mitochondrial mTERF wraps around DNA through a left-handed superhelical tandem repeat. Nature Structural and Molecular Biology, 2010, 17, 891-893.	3.6	46
49	Oncogenic mutations at the EGFR ectodomain structurally converge to remove a steric hindrance on a kinase-coupled cryptic epitope. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 10009-10018.	3.3	46
50	Flanking Regions Determine the Structure of the Poly-Glutamine in Huntingtin through Mechanisms Common among Glutamine-Rich Human Proteins. Structure, 2020, 28, 733-746.e5.	1.6	45
51	The hexameric structure of the human mitochondrial replicative helicase Twinkle. Nucleic Acids Research, 2015, 43, 4284-4295.	6.5	40
52	Solution scattering approaches to dynamical ordering in biomolecular systems. Biochimica Et Biophysica Acta - General Subjects, 2018, 1862, 253-274.	1.1	39
53	Combined Use of NMR Relaxation Measurements and Hydrodynamic Calculations To Study Protein Association. Evidence for Tetramers of Low Molecular Weight Protein Tyrosine Phosphatase in Solution. Journal of the American Chemical Society, 2003, 125, 916-923.	6.6	38

54 Analysis of Intrinsically Disordered Proteins by Small-Angle X-ray Scattering. , 2012, 896, 107-122.

38

#	Article	IF	CITATIONS
55	The Dimeric Structure and the Bivalent Recognition of H3K4me3 by the Tumor Suppressor ING4 Suggests a Mechanism for Enhanced Targeting of the HBO1 Complex to Chromatin. Journal of Molecular Biology, 2010, 396, 1117-1127.	2.0	36
56	Disentangling polydispersity in the PCNAâ^'p15PAF complex, a disordered, transient and multivalent macromolecular assembly. Nucleic Acids Research, 2017, 45, 1501-1515.	6.5	33
57	A General Strategy to Access Structural Information at Atomic Resolution in Polyglutamine Homorepeats. Angewandte Chemie - International Edition, 2018, 57, 3598-3601.	7.2	30
58	Structural Characterization of Highly Flexible Proteins by Small-Angle Scattering. Advances in Experimental Medicine and Biology, 2017, 1009, 107-129.	0.8	29
59	Interpretation of NMR relaxation properties of Pin1, a two-domain protein, based on Brownian dynamic simulations. Journal of Biomolecular NMR, 2004, 29, 21-35.	1.6	27
60	Structural Analysis of an Equilibrium Folding Intermediate in the Apoflavodoxin Native Ensemble by Small-Angle X-ray Scattering. Journal of Molecular Biology, 2011, 406, 604-619.	2.0	27
61	NMR measurement of the off rate from the first calcium-binding site of the synaptotagmin I C2A domain. FEBS Letters, 2002, 516, 93-96.	1.3	26
62	Structural characterization of unphosphorylated STAT5a oligomerization equilibrium in solution by smallâ€angle Xâ€ray scattering. Protein Science, 2009, 18, 716-726.	3.1	26
63	Protein backbone dynamics from N–HN dipolar couplings in partially aligned systems: a comparison of motional models in the presence of structural noise. Journal of Magnetic Resonance, 2005, 173, 328-338.	1.2	25
64	Structural Characterization of the Ribosomal P1Aâ ^{~^} P2B Protein Dimer by Small-Angle X-ray Scattering and NMR Spectroscopy. Biochemistry, 2007, 46, 1988-1998.	1.2	25
65	Structural Disorder within Sendai Virus Nucleoprotein and Phosphoprotein: Insight into the Structural Basis of Molecular Recognition. Protein and Peptide Letters, 2010, 17, 952-960.	0.4	25
66	Design and Structure of an Equilibrium Protein Folding Intermediate: A Hint into Dynamical Regions of Proteins. Journal of Molecular Biology, 2010, 400, 922-934.	2.0	25
67	A Three-protein Charge Zipper Stabilizes a Complex Modulating Bacterial Gene Silencing. Journal of Biological Chemistry, 2015, 290, 21200-21212.	1.6	18
68	The importance of definitions in the study of polyQ regions: A tale of thresholds, impurities and sequence context. Computational and Structural Biotechnology Journal, 2020, 18, 306-313.	1.9	18
69	Evidence of the Reduced Abundance of Proline cis Conformation in Protein Poly Proline Tracts. Journal of the American Chemical Society, 2020, 142, 7976-7986.	6.6	18
70	Protein Tyrosine Phosphatase Oligomerization Studied by a Combination of15N NMR Relaxation and129Xe NMR. Effect of Buffer Containing Arginine and Glutamic Acid. Journal of the American Chemical Society, 2007, 129, 5946-5953.	6.6	16
71	Ensemble Structure of the Highly Flexible Complex Formed between Vesicular Stomatitis Virus Unassembled Nucleoprotein and its Phosphoprotein Chaperone. Journal of Molecular Biology, 2016, 428, 2671-2694.	2.0	16
72	Protein Flexibility and Synergy of HMG Domains Underlie U-Turn Bending of DNA by TFAM in Solution. Biophysical Journal, 2018, 114, 2386-2396.	0.2	16

#	Article	IF	CITATIONS
73	Protein loop compaction and the origin of the effect of arginine and glutamic acid mixtures on solubility, stability and transient oligomerization of proteins. European Biophysics Journal, 2011, 40, 1327-1338.	1.2	15
74	Defining the Nature of Thermal Intermediate in 3 State Folding Proteins: Apoflavodoxin, a Study Case. PLoS Computational Biology, 2012, 8, e1002647.	1.5	14
75	Activeâ€Siteâ€Directed Inhibitors of Prolyl Oligopeptidase Abolish Its Conformational Dynamics. ChemBioChem, 2016, 17, 913-917.	1.3	14
76	Disulfide driven folding for a conditionally disordered protein. Scientific Reports, 2017, 7, 16994.	1.6	14
77	Structural Insights into the Interaction of the Intrinsically Disordered Co-activator TIF2 with Retinoic Acid Receptor Heterodimer (RXR/RAR). Journal of Molecular Biology, 2021, 433, 166899.	2.0	14
78	Comment on the Optimal Parameters to Derive Intrinsically Disordered Protein Conformational Ensembles from Small-Angle X-ray Scattering Data Using the Ensemble Optimization Method. Journal of Chemical Theory and Computation, 2021, 17, 2014-2021.	2.3	13
79	Tailoring the NIRâ€II Photoluminescence of Single Thiolated Au ₂₅ Nanoclusters by Selective Binding to Proteins**. Chemistry - A European Journal, 2022, 28, .	1.7	13
80	Lanthanide Modulation of the Orientation of Macromolecules Induced by Purple Membrane. Journal of the American Chemical Society, 2002, 124, 374-375.	6.6	12
81	Double Monoubiquitination Modifies the Molecular Recognition Properties of p15PAF Promoting Binding to the Reader Module of Dnmt1. ACS Chemical Biology, 2019, 14, 2315-2326.	1.6	12
82	Site‧pecific Isotopic Labeling (SSIL): Access to Highâ€Resolution Structural and Dynamic Information in Low omplexity Proteins. ChemBioChem, 2020, 21, 769-775.	1.3	12
83	Measurement and Analysis of NMR Residual Dipolar Couplings for the Study of Intrinsically Disordered Proteins. Methods in Molecular Biology, 2012, 895, 115-125.	0.4	11
84	Conformational transitions in human translin enable nucleic acid binding. Nucleic Acids Research, 2013, 41, 9956-9966.	6.5	11
85	Robust Cell-Free Expression of Sub-Pathological and Pathological Huntingtin Exon-1 for NMR Studies. General Approaches for the Isotopic Labeling of Low-Complexity Proteins. Biomolecules, 2020, 10, 1458.	1.8	11
86	Predicting Secondary Structure Propensities in IDPs Using Simple Statistics from Three-Residue Fragments. Journal of Molecular Biology, 2020, 432, 5447-5459.	2.0	10
87	Hybrid parallelization of a multi-tree path search algorithm: Application to highly-flexible biomolecules. Parallel Computing, 2018, 77, 84-100.	1.3	9
88	Weak oligomerization of lowâ€molecularâ€weight protein tyrosine phosphatase is conserved from mammals to bacteria. FEBS Journal, 2009, 276, 4346-4357.	2.2	8
89	A General Strategy to Access Structural Information at Atomic Resolution in Polyglutamine Homorepeats. Angewandte Chemie, 2018, 130, 3660-3663.	1.6	8
90	Structural Analyses of Intrinsically Disordered Proteins by Small-Angle X-Ray Scattering. Methods in Molecular Biology, 2020, 2141, 249-269.	0.4	8

#	Article	IF	CITATIONS
91	Molecular and cellular insight into Escherichia coli SslE and its role during biofilm maturation. Npj Biofilms and Microbiomes, 2022, 8, 9.	2.9	8
92	On the Use of low-resolution Data to Improve Structure Prediction of Proteins and Protein Complexes. Journal of Chemical Theory and Computation, 2009, 5, 3129-3137.	2.3	7
93	Structure and thermodynamics of transient protein-protein complexes by chemometric decomposition of SAXS datasets. Structure, 2021, 29, 1074-1090.e4.	1.6	7
94	Structural Characterization of Protein–Protein Interactions with pyDockSAXS. Methods in Molecular Biology, 2020, 2112, 131-144.	0.4	7
95	Structural Insights into the Intrinsically Disordered GPCR C-Terminal Region, Major Actor in Arrestin-GPCR Interaction. Biomolecules, 2022, 12, 617.	1.8	7
96	The metastasis suppressor KISS1 is an intrinsically disordered protein slightly more extended than a random coil. PLoS ONE, 2017, 12, e0172507.	1.1	6
97	IDPs and their complexes in GPCR and nuclear receptor signaling. Progress in Molecular Biology and Translational Science, 2020, 174, 105-155.	0.9	6
98	The diversity of molecular interactions involving intrinsically disordered proteins: A molecular modeling perspective. Computational and Structural Biotechnology Journal, 2021, 19, 3817-3828.	1.9	6
99	Noninvasive Structural Analysis of Intermediate Species During Fibrillation: An Application of Small-Angle X-Ray Scattering. Methods in Molecular Biology, 2018, 1779, 209-239.	0.4	5
100	Conformational Characterization of Intrinsically Disordered Proteins and Its Biological Significance. , 2018, , 381-399.		5
101	Lowâ€resolution structural approaches to study biomolecular assemblies. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2011, 1, 283-297.	6.2	4
102	Integrative Biophysics: Protein Interaction and Disorder. Journal of Molecular Biology, 2020, 432, 2843-2845.	2.0	3
103	An Integrative Structural Biology Analysis of Von Willebrand Factor Binding and Processing by ADAMTS-13 in Solution. Journal of Molecular Biology, 2021, 433, 166954.	2.0	3
104	Investigating the Formation of Structural Elements in Proteins Using Local Sequence-Dependent Information and a Heuristic Search Algorithm. Molecules, 2019, 24, 1150.	1.7	2
105	Interdomain linkers tailor the stability of immunoglobulin repeats in polyproteins. Biochemical and Biophysical Research Communications, 2021, 550, 43-48.	1.0	2
106	Conformational Characterization of Intrinsically Disordered Proteins and Its Biological Significance. , 2017, , 1-20.		2
107	A FRET-Based Biosensor for the Src N-Terminal Regulatory Element. Biosensors, 2022, 12, 96.	2.3	1
108	Cover Feature: Tailoring the NIRâ€II Photoluminescence of Single Thiolated Au ₂₅ Nanoclusters by Selective Binding to Proteins (Chem. Eur. J. 39/2022). Chemistry - A European Journal, 2022, 28, .	1.7	0

7