V R Supradeepa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1146794/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cascaded raman fiber lasers with very high spectral purity and low intensity noise. , 2022, , .		Ο
2	Fourier pulse shaper assisted feedback in cascaded Raman lasers for reduced linewidth and wide wavelength tunability. , 2022, , .		0
3	Cascaded Raman fiber lasers with ultrahigh spectral purity. Optics Letters, 2022, 47, 3499.	3.3	6
4	Pump Wavelength Flexible, Continuous-Wave Fiber Supercontinuum Using Two-Stage Spectral Broadening. IEEE Photonics Technology Letters, 2021, 33, 31-34.	2.5	1
5	Tellurium-oxide coated silicon-nitride hybrid waveguide for near-to-mid-IR supercontinuum generation: design and analysis. Journal of Modern Optics, 2021, 68, 29-36.	1.3	7
6	Widely linewidth tunable lasers through cascaded four-wave mixing based phase modulation amplification. Journal of Optics (United Kingdom), 2021, 23, 025502.	2.2	1
7	Determination and Analysis of Line-Shape Induced Enhancement of Stimulated Brillouin Scattering in Noise Broadened, Narrow Linewidth, High Power Fiber Lasers. IEEE Photonics Journal, 2021, 13, 1-12.	2.0	5
8	Far-detuned mid-IR wavelength conversion at 4.05 µm in a tellurium oxide rib waveguide pumped at 1550Ânm: Design and analysis. AIP Advances, 2021, 11, 055110.	1.3	0
9	Visible light flashes induced by pulsed stimulated Brillouin scattering in narrow-linewidth, high-power, near-IR fiber lasers. Journal of Optics (United Kingdom), 2021, 23, 075501.	2.2	2
10	Enhancing the Efficacy of Noise Modulation for SBS Suppression in High Power, Narrow Linewidth Fiber Lasers by the Incorporation of Sinusoidal Modulation. IEEE Photonics Journal, 2021, 13, 1-6.	2.0	10
11	Continuous linewidth tuning of a laser source from single frequency to over 30CHz using phase modulation amplification using cascaded four-wave mixing. , 2020, , .		1
12	Enhanced nonlinear spectral broadening and sub-picosecond pulse generation by adaptive spectral phase optimization of electro-optic frequency combs. Optics Express, 2020, 28, 11215.	3.4	8
13	Visible light generation in the cladding of optical fibers carrying near-infrared continuous-wave lasers due to Cherenkov-phase matched harmonic conversion. Optics Letters, 2020, 45, 993.	3.3	5
14	Octave-spanning, continuous-wave supercontinuum generation with record power using standard telecom fibers pumped with power-combined fiber lasers. Optics Letters, 2020, 45, 1172.	3.3	14
15	Generation of a multi-wavelength source spanning the entire C-band by nonlinear spectral broadening of dual-carrier electro-optic frequency combs. OSA Continuum, 2020, 3, 2185.	1.8	5
16	Optical frequency comb based on nonlinear spectral broadening of a phase modulated comb source driven by dual offset locked carriers. Optics Letters, 2020, 45, 893.	3.3	12
17	Octave-spanning, continuous-wave supercontinuum generation with record power using standard telecom fibers pumped with power-combined fiber lasers: publisher's note. Optics Letters, 2020, 45, 1325.	3.3	0
18	Bandwidth scaling of silicon modulator-based combs using multi-carriers and frequency offset locking. OSA Continuum, 2020, 3, 921.	1.8	1

V R SUPRADEEPA

#	Article	IF	CITATIONS
19	Microwave power induced resonance shifting of silicon ring modulators for continuously tunable, bandwidth scaled frequency combs. Optics Express, 2020, 28, 13032.	3.4	3
20	Tailored optical feedback for bandwidth scaling and spectral equalization of high repetition rate electro-optic frequency combs. OSA Continuum, 2020, 3, 3280.	1.8	1
21	Raman Based Power Combining and Wavelength Conversion of Multiple Fiber Lasers — Number Scaling and Limits on Wavelength Separation. , 2019, , .		0
22	High-Power, Independently Wavelength, Power, and Linewidth Tunable Ytterbium Fiber Laser. IEEE Photonics Technology Letters, 2019, 31, 583-586.	2.5	8
23	High-power, cascaded random Raman fiber laser with near complete conversion over wide wavelength and power tuning. Optics Express, 2019, 27, 9725.	3.4	58
24	Adaptive Spectral Phase Optimization of High Repetition Rate Electro-Optic Frequency Combs for Enhanced Nonlinear Spectral Broadening. , 2019, , .		0
25	Achieving High-Power, Ultra-High Spectral Purity Cascaded Raman Fiber Lasers through Low Intensity-Noise Pump Sources. , 2019, , .		1
26	Observation of visible light flashes in high power, near infrared, narrow-linewidth fiber lasers and its potential use as a visual monitor for stimulated Brillouin scattering. , 2019, , .		1
27	Continuously linewidth tunable, polarisation maintaining, narrow linewidth fiber laser. , 2019, , .		5
28	High-power, widely wavelength tunable, grating-free Raman fiber laser based on filtered feedback. Optics Letters, 2019, 44, 279.	3.3	30
29	High power, ultra-high spectral purity, broadly wavelength tunable cascaded Raman fiber laser. , 2019, , .		Ο
30	Spectral and temporal stability of cascaded Raman based high power, octave spanning, continuous-wave, supercontinuum sources. , 2019, , .		0
31	Experimental analysis of stimulated Brillouin enhancement in high power, line-broadened, narrow-linewidth fiber amplifiers due to spectral overlap between the Brillouin gain spectrum and the signal back-scatter from the fiber termination. , 2019, , .		3
32	Optical Frequency Comb synthesis for super channel based high-bandwidth data communication. CSI Transactions on ICT, 2018, 6, 33-38.	1.0	1
33	Observation of visible light flashes in high power near infrared narrow linewidth polarization maintained fiber laser caused by Stimulated Brillouin Scattering triggered cascaded Raman Scattering. , 2018, , .		Ο
34	All passive architecture for high efficiency cascaded Raman conversion. Optics Express, 2018, 26, 3046.	3.4	11
35	Simultaneous Raman based power combining and wavelength conversion of high-power fiber lasers. Optics Express, 2018, 26, 4954.	3.4	7
36	High power, high efficiency, continuous-wave supercontinuum generation using standard telecom fibers. Optics Express, 2018, 26, 7979.	3.4	19

V R SUPRADEEPA

#	Article	IF	CITATIONS
37	Generation of tunable, high repetition rate optical frequency combs using on-chip silicon modulators. Optics Express, 2018, 26, 10744.	3.4	21
38	High Power, Tunable, Continuous-Wave Fiber Lasers in the L-Band Using Cascaded Raman Amplifiers. IEEE Photonics Technology Letters, 2018, 30, 1412-1415.	2.5	4
39	High-power continuous-wave supercontinuum generation in highly nonlinear fibers pumped with high-order cascaded Raman fiber amplifiers. Applied Optics, 2018, 57, 5978.	1.8	10
40	High-power, fixed, and tunable wavelength, grating-free cascaded Raman fiber lasers. Optics Letters, 2018, 43, 1574.	3.3	28
41	Stability analysis of high power, octave spanning, continuous-wave supercontinuum sources based on cascaded Raman scattering in standard telecom fibers. OSA Continuum, 2018, 1, 1267.	1.8	5
42	Resonant pumping of high power fiber lasers with conventional laser diodes. OSA Continuum, 2018, 1, 651.	1.8	0
43	High power fiber lasers in the SWIR band using Raman lasers. CSI Transactions on ICT, 2017, 5, 143-148.	1.0	1
44	Raman fiber lasers. Journal of Optics (United Kingdom), 2017, 19, 023001.	2.2	141
45	Optical single sideband generation using self-coupled micro ring resonator in SOI. , 2017, , .		1
46	High power, equalized, continuous-wave supercontinuum generation using cascaded Raman fiber amplifiers. , 2017, , .		4
47	High power, grating-free, cascaded Raman fiber lasers. , 2017, , .		5
48	Generation of tunable, high repetition rate frequency combs with equalized spectra using carrier injection based silicon modulators. , 2016, , .		5
49	Effect of intensity noise on stimulated Raman scattering in high power fiber lasers and amplifiers. , 2015, , .		2
50	Multicore Erbium Doped Fiber Amplifiers for Space Division Multiplexing Systems. Journal of Lightwave Technology, 2014, 32, 2800-2808.	4.6	60
51	Stimulated Brillouin scattering thresholds in optical fibers for lasers linewidth broadened with noise. Optics Express, 2013, 21, 4677.	3.4	51
52	Fully programmable two-dimensional pulse shaper for broadband line-by-line amplitude and phase control. Optics Express, 2013, 21, 28029.	3.4	20
53	A high efficiency architecture for cascaded Raman fiber lasers. Optics Express, 2013, 21, 7148.	3.4	49
54	Power scaling of high-efficiency 15Âμm cascaded Raman fiber lasers. Optics Letters, 2013, 38, 2538.	3.3	129

V R SUPRADEEPA

#	Article	IF	CITATIONS
55	Programmable broadband ultra-fine resolution 2-D pulse shaping. EPJ Web of Conferences, 2013, 41, 11002.	0.3	0
56	Cladding-pumped erbium-doped multicore fiber amplifier. Optics Express, 2012, 20, 20191.	3.4	154
57	Scaling the effective area of higher-order-mode erbium-doped fiber amplifiers. Optics Express, 2012, 20, 24575.	3.4	50
58	Bandwidth scaling and spectral flatness enhancement of optical frequency combs from phase-modulated continuous-wave lasers using cascaded four-wave mixing. Optics Letters, 2012, 37, 3066.	3.3	62
59	Comb-based radiofrequency photonic filters with rapid tunability and high selectivity. Nature Photonics, 2012, 6, 186-194.	31.4	266
60	Cascaded Raman fiber laser at 1480 nm with output power of 104 W. , 2012, , .		16
61	Reconfigurable optical filter based on a phase-only liquid-crystal spatial light modulator. , 2011, , .		0
62	Tunable radio frequency photonic filter based on intensity modulation of optical combs. , 2010, , .		8
63	Fast Characterization of Dispersion and Dispersion Slope of Optical Fiber Links Using Spectral Interferometry With Frequency Combs. IEEE Photonics Technology Letters, 2010, 22, 155-157.	2.5	9
64	Self-referenced characterization of optical frequency combs and arbitrary waveforms using a simple, linear, zero-delay implementation of spectral shearing interferometry. Optics Express, 2010, 18, 18171.	3.4	14
65	Reconfigurable all-diffractive optical filters using phase-only spatial light modulators. Optics Letters, 2010, 35, 2406.	3.3	12
66	Generation of very flat optical frequency combs from continuous-wave lasers using cascaded intensity and phase modulators driven by tailored radio frequency waveforms. Optics Letters, 2010, 35, 3234.	3.3	350
67	Highly flat and stable optical frequency comb generation using intensity and phase modulators employing quasi-quadratic phase modulation. , 2010, , .		1
68	Optical arbitrary waveform characterization via dual-quadrature spectral interferometry. Optics Express, 2009, 17, 25.	3.4	29
69	Single shot amplitude and phase characterization of optical arbitrary waveforms. Optics Express, 2009, 17, 14434.	3.4	21
70	Femtosecond pulse shaping in two dimensions: Towards higher complexity optical waveforms. Optics Express, 2008, 16, 11878.	3.4	54