
Volker Gerdts

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11467476/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Domestic pigs experimentally infected with Mycobacterium bovis and Mycobacterium tuberculosis exhibit different disease outcomes. Tuberculosis, 2022, 133, 102167.	1.9	3
2	Assessing the <i>In Vivo</i> Effectiveness of Cationic Lipid Nanoparticles with a Triple Adjuvant for Intranasal Vaccination against the Respiratory Pathogen <i>Bordetella pertussis</i> . Molecular Pharmaceutics, 2022, 19, 1814-1824.	4.6	5
3	Immunogenicity of convalescent and vaccinated sera against clinical isolates of ancestral SARS-CoV-2, Beta, Delta, and Omicron variants. Med, 2022, 3, 422-432.e3.	4.4	9
4	Characterization of Dosage Levels for In Ovo Administration of Innate Immune Stimulants for Prevention of Yolk Sac Infection in Chicks. Veterinary Sciences, 2022, 9, 203.	1.7	3
5	High-resolution analysis of long-term serum antibodies in humans following convalescence of SARS-CoV-2 infection. Scientific Reports, 2022, 12, .	3.3	3
6	Transmissible Gastroenteritis Virus of Pigs and Porcine Epidemic Diarrhea Virus (Coronaviridae). , 2021, , 850-853.		3
7	A bivalent live attenuated influenza virus vaccine protects against H1N2 and H3N2 viral infection in swine. Veterinary Microbiology, 2021, 253, 108968.	1.9	3
8	Animal board invited review: Risks of zoonotic disease emergence at the interface of wildlife and livestock systems. Animal, 2021, 15, 100241.	3.3	23
9	Centenarians and extremely old people living with frailty can elicit durable SARS-CoV-2 spike specific IgG antibodies with virus neutralization functions following virus infection as determined by serological study. EClinicalMedicine, 2021, 37, 100975.	7.1	6
10	Sex and age bias viral burden and interferon responses during SARS-CoV-2 infection in ferrets. Scientific Reports, 2021, 11, 14536.	3.3	14
11	SARS-CoV-2 infection in the Syrian hamster model causes inflammation as well as type I interferon dysregulation in both respiratory and non-respiratory tissues including the heart and kidney. PLoS Pathogens, 2021, 17, e1009705.	4.7	60
12	Construction of a Noninfectious SARS-CoV-2 Replicon for Antiviral-Drug Testing and Gene Function Studies. Journal of Virology, 2021, 95, e0068721.	3.4	25
13	Avian antimicrobial peptides: in vitro and in ovo characterization and protection from early chick mortality caused by yolk sac infection. Scientific Reports, 2021, 11, 2132.	3.3	11
14	Baseline analysis of Mycoplasma mycoides subsp. mycoides antigens as targets for a DIVA assay for use with a subunit vaccine for contagious bovine pleuropneumonia. BMC Veterinary Research, 2020, 16, 236.	1.9	4
15	Contagious Bovine and Caprine Pleuropneumonia: a research community's recommendations for the development of better vaccines. Npj Vaccines, 2020, 5, 66.	6.0	23
16	Zika Virus with Increased CpG Dinucleotide Frequencies Shows Oncolytic Activity in Glioblastoma Stem Cells. Viruses, 2020, 12, 579.	3.3	16
17	Regional Dichotomy in Enteric Mucosal Immune Responses to a Persistent Mycobacterium avium ssp. paratuberculosis Infection. Frontiers in Immunology, 2020, 11, 1020.	4.8	8
18	Susceptibility of Chicken Embryos, Sheep, Cattle, Pigs, and Chickens to Zika Virus Infection. Frontiers in Veterinary Science, 2020, 7, 23.	2.2	5

#	Article	IF	CITATIONS
19	Mucosal Vaccination with UV-Inactivated Chlamydia suis in Pre-Exposed Outbred Pigs Decreases Pathogen Load and Induces CD4 T-Cell Maturation into IFN-γ+ Effector Memory Cells. Vaccines, 2020, 8, 353.	4.4	7
20	A Porcine Model of Zika Virus Infection to Profile the In Utero Interferon Alpha Response. Methods in Molecular Biology, 2020, 2142, 181-195.	0.9	7
21	Innate immunemodulator containing adjuvant formulated HA based vaccine protects mice from lethal infection of highly pathogenic avian influenza H5N1 virus. Vaccine, 2020, 38, 2387-2395.	3.8	8
22	Integrin alpha-v/beta3 expression in equine lungs and jejunum. Canadian Journal of Veterinary Research, 2020, 84, 245-251.	0.2	0
23	A Bovine Enteric Infection Model to Analyze Parenteral Vaccine-Induced Mucosal Immunity and Accelerate Vaccine Discovery. Frontiers in Immunology, 2020, 11, 586659.	4.8	0
24	The African strain of Zika virus causes more severe <i>in utero</i> infection than Asian strain in a porcine fetal transmission model. Emerging Microbes and Infections, 2019, 8, 1098-1107.	6.5	49
25	Synthetic Cationic Peptide IDR-1002 and Human Cathelicidin LL37 Modulate the Cell Innate Response but Differentially Impact PRRSV Replication in vitro. Frontiers in Veterinary Science, 2019, 6, 233.	2.2	8
26	A lipidic delivery system of a triple vaccine adjuvant enhances mucosal immunity following nasal administration in mice. Vaccine, 2019, 37, 1503-1515.	3.8	22
27	Subclinical in utero Zika virus infection is associated with interferon alpha sequelae and sex-specific molecular brain pathology in asymptomatic porcine offspring. PLoS Pathogens, 2019, 15, e1008038.	4.7	18
28	CpG-Recoding in Zika Virus Genome Causes Host-Age-Dependent Attenuation of Infection With Protection Against Lethal Heterologous Challenge in Mice. Frontiers in Immunology, 2019, 10, 3077.	4.8	33
29	Intradermal immunization with inactivated swine influenza virus and adjuvant polydi(sodium) Tj ETQq1 1 0.784 reduced lung viral titres in pigs. Vaccine, 2018, 36, 1606-1613.	1314 rgBT / 3.8	Overlock 10 16
30	Contribution of the swine model in the study of human sexually transmitted infections. Infection, Genetics and Evolution, 2018, 66, 346-360.	2.3	22
31	High dosage of zinc modulates T-cells in a time-dependent manner within porcine gut-associated lymphatic tissue. British Journal of Nutrition, 2018, 120, 1349-1358.	2.3	8
32	<i>In Ovo</i> Administration of Innate Immune Stimulants and Protection from Early Chick Mortalities due to Yolk Sac Infection. Avian Diseases, 2018, 62, 316-321.	1.0	15
33	Persistent Zika virus infection in porcine conceptuses is associated with elevated <i>in utero</i> cortisol levels. Virulence, 2018, 9, 1338-1343.	4.4	18
34	Vaccination of koalas (Phascolarctos cinereus) against Chlamydia pecorum using synthetic peptides derived from the major outer membrane protein. PLoS ONE, 2018, 13, e0200112.	2.5	12
35	RGDSK Peptide Functionalized Helical Rosette Nanotubes (RGDSKâ€HRNs) Inhibit <i>E. coli</i> Adherence to Jejunal Epithelium by Blocking Integrin αvβ3. FASEB Journal, 2018, 32, 406.9.	0.5	0
36	lmmune responses to in ovo vaccine formulations containing inactivated fowl adenovirus 8b with poly[di(sodium carboxylatoethylphenoxy)]phosphazene (PCEP) and avian beta defensin as adjuvants in chickens. Vaccine, 2017, 35, 981-986.	3.8	20

#	Article	IF	CITATIONS
37	Neonatal pigs are susceptible to experimental Zika virus infection. Emerging Microbes and Infections, 2017, 6, 1-4.	6.5	34
38	Protective Role of Passively Transferred Maternal Cytokines against Bordetella pertussis Infection in Newborn Piglets. Infection and Immunity, 2017, 85, .	2.2	22
39	Vaccines for porcine epidemic diarrhea virus and other swine coronaviruses. Veterinary Microbiology, 2017, 206, 45-51.	1.9	123
40	Intranasal vaccination with an adjuvanted polyphosphazenes nanoparticle-based vaccine formulation stimulates protective immune responses in mice. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 2169-2178.	3.3	25
41	Safety and immunogenicity of a prototype anti-Chlamydia pecorum recombinant protein vaccine in lambs and pregnant ewes. Vaccine, 2017, 35, 3461-3465.	3.8	10
42	A novel combination adjuvant platform for human and animal vaccines. Vaccine, 2017, 35, 4486-4489.	3.8	40
43	Multistage vaccines containing outer membrane, type III secretion system and inclusion membrane proteins protects against a Chlamydia genital tract infection and pathology. Vaccine, 2017, 35, 3883-3888.	3.8	18
44	CD71+ erythroid suppressor cells impair adaptive immunity against Bordetella pertussis. Scientific Reports, 2017, 7, 7728.	3.3	49
45	Zika Virus Causes Persistent Infection in Porcine Conceptuses and may Impair Health in Offspring. EBioMedicine, 2017, 25, 73-86.	6.1	38
46	Immunization of a wild koala population with a recombinant Chlamydia pecorum Major Outer Membrane Protein (MOMP) or Polymorphic Membrane Protein (PMP) based vaccine: New insights into immune response, protection and clearance. PLoS ONE, 2017, 12, e0178786.	2.5	24
47	S1 domain of the porcine epidemic diarrhea virus spike protein as a vaccine antigen. Virology Journal, 2016, 13, 57.	3.4	77
48	Capsular polysaccharide from Mycoplasma mycoides subsp. mycoides shows potential for protection against contagious bovine pleuropneumonia. Veterinary Immunology and Immunopathology, 2016, 178, 64-69.	1.2	10
49	Protection of neonates and infants by maternal immunization. Expert Review of Vaccines, 2016, 15, 1347-1349.	4.4	11
50	Antibody and Cytokine Responses of Koalas (Phascolarctos cinereus) Vaccinated with Recombinant Chlamydial Major Outer Membrane Protein (MOMP) with Two Different Adjuvants. PLoS ONE, 2016, 11, e0156094.	2.5	23
51	Oral antigen exposure in newborn piglets circumvents induction of oral tolerance in response to intraperitoneal vaccination in later life. BMC Veterinary Research, 2015, 11, 50.	1.9	4
52	Large Animal Models for Vaccine Development and Testing. ILAR Journal, 2015, 56, 53-62.	1.8	94
53	Antibody Response Specific to the Capsular Polysaccharide Is Impaired in Streptococcus suis Serotype 2-Infected Animals. Infection and Immunity, 2015, 83, 441-453.	2.2	36
54	A lumpy skin disease virus deficient of an IL-10 gene homologue provides protective immunity against virulent capripoxvirus challenge in sheep and goats. Antiviral Research, 2015, 123, 39-49.	4.1	33

#	Article	IF	CITATIONS
55	Peste des Petits Ruminants Virus Tissue Tropism and Pathogenesis in Sheep and Goats following Experimental Infection. PLoS ONE, 2014, 9, e87145.	2.5	78
56	Mouse and Pig Models for Studies of Natural and Vaccine-Induced Immunity to Bordetella pertussis. Journal of Infectious Diseases, 2014, 209, S16-S19.	4.0	38
57	Enzymatic Modification of Lipid A by ArnT Protects Bordetella bronchiseptica against Cationic Peptides and Is Required for Transmission. Infection and Immunity, 2014, 82, 491-499.	2.2	21
58	Vaccination of koalas (Phascolarctos cinereus) with a recombinant chlamydial major outer membrane protein adjuvanted with poly I:C, a host defense peptide and polyphosphazine, elicits strong and long lasting cellular and humoral immune responses. Vaccine, 2014, 32, 5781-5786.	3.8	44
59	CpG-ODNs induced changes in cytokine/chemokines genes expression associated with suppression of infectious bronchitis virus replication in chicken lungs. Veterinary Immunology and Immunopathology, 2014, 160, 209-217.	1.2	30
60	Caspase-1 Dependent IL- $1\hat{l}^2$ Secretion and Antigen-Specific T-Cell Activation by the Novel Adjuvant, PCEP. Vaccines, 2014, 2, 500-514.	4.4	13
61	c-di-GMP Enhances Protective Innate Immunity in a Murine Model of Pertussis. PLoS ONE, 2014, 9, e109778.	2.5	21
62	Novel vaccine formulations against pertussis offer earlier onset of immunity and provide protection in the presence of maternal antibodies. Vaccine, 2013, 31, 3148-3155.	3.8	39
63	Capripoxvirus-vectored vaccines against livestock diseases in Africa. Antiviral Research, 2013, 98, 217-227.	4.1	33
64	Carrier molecules for use in veterinary vaccines. Vaccine, 2013, 31, 596-602.	3.8	40
65	Animal models for neonatal diseases in humans. Vaccine, 2013, 31, 2489-2499.	3.8	10
66	Future vaccines for a globalized world. Emerging Microbes and Infections, 2012, 1, 1-2.	6.5	2
67	The pig: a model for human infectious diseases. Trends in Microbiology, 2012, 20, 50-57.	7.7	803
68	The Importance of Animal Models in the Development of Vaccines. , 2012, , 251-264.		11
69	Combination adjuvants: the next generation of adjuvants?. Expert Review of Vaccines, 2011, 10, 95-107.	4.4	97
70	Protein chimeras containing the Mycoplasma bovis GAPDH protein and bovine host-defence peptides retain the properties of the individual components. Microbial Pathogenesis, 2011, 50, 269-277.	2.9	15
71	Influence of maternal antibodies on active pertussis toxoid immunization of neonatal mice and piglets. Vaccine, 2011, 29, 7718-7726.	3.8	40
72	Induction, regulation and physiological role of IL-17 secreting helper T-cells isolated from PBMC, thymus, and lung lymphocytes of young pigs. Veterinary Immunology and Immunopathology, 2011, 144, 448-454.	1.2	31

#	Article	IF	CITATIONS
73	Biological roles of host defense peptides: lessons from transgenic animals and bioengineered tissues. Cell and Tissue Research, 2011, 343, 213-225.	2.9	9
74	Does adjuvanticity depend on the ability to recruit specific immune cells?. Expert Review of Vaccines, 2011, 10, 433-435.	4.4	3
75	The Potential of Polyphosphazenes for Delivery of Vaccine Antigens and Immunotherapeutic Agents. Current Drug Delivery, 2010, 7, 13-20.	1.6	48
76	PCEP enhances IgA mucosal immune responses in mice following different immunization routes with influenza virus antigens. Journal of Immune Based Therapies and Vaccines, 2010, 8, 4.	2.4	26
77	Humoral and cellular factors of maternal immunity in swine. Developmental and Comparative Immunology, 2009, 33, 384-393.	2.3	202
78	A novel vaccine adjuvant comprised of a synthetic innate defence regulator peptide and CpG oligonucleotide links innate and adaptive immunity. Vaccine, 2009, 27, 4662-4671.	3.8	72
79	CpG Oligodeoxynucleotides Activate Innate Immune Response that Suppresses Infectious Bronchitis Virus Replication in Chicken Embryos. Avian Diseases, 2009, 53, 261-267.	1.0	54
80	Early immune response following <i>Salmonella enterica</i> subspecies <i>enterica</i> serovar Typhimurium infection in porcine jejunal gut loops. Veterinary Research, 2009, 40, 05.	3.0	121
81	Molecular cloning and functional characterization of porcine CCL28: Possible involvement in homing of IgA antibody secreting cells into the mammary gland. Molecular Immunology, 2008, 45, 271-277.	2.2	27
82	New insights into the dual recruitment of IgA+ B cells in the developing mammary gland. Molecular Immunology, 2008, 45, 3354-3362.	2.2	48
83	Veterinary vaccines: alternatives to antibiotics?. Animal Health Research Reviews, 2008, 9, 187-199.	3.1	39
84	Infection with <i>Bordetella parapertussis</i> but Not <i>Bordetella pertussis</i> Causes Pertussis‣ike Disease in Older Pigs. Journal of Infectious Diseases, 2008, 198, 384-392.	4.0	17
85	Use of animal models in the development of human vaccines. Future Microbiology, 2007, 2, 667-675.	2.0	50
86	The benefits of using diverse animal models for studying pertussis. Trends in Microbiology, 2007, 15, 462-468.	7.7	61
87	Expression of mucosal chemokines TECK/CCL25 and MEC/CCL28 during fetal development of the ovine mucosal immune system. Immunology, 2007, 120, 544-555.	4.4	22
88	Commensal Bacteria and Expression of Two Major Intestinal Chemokines, TECK/CCL25 and MEC/CCL28, and Their Receptors. PLoS ONE, 2007, 2, e677.	2.5	60
89	Expression of TECK/CCL25 and MEC/CCL28 chemokines and their respective receptors CCR9 and CCR10 in porcine mucosal tissues. Veterinary Immunology and Immunopathology, 2006, 113, 313-327.	1.2	40
90	The Host Defense Peptide Beta-Defensin 1 Confers Protection against Bordetella pertussis in Newborn Piglets. Infection and Immunity, 2006, 74, 2338-2352.	2.2	81

#	Article	IF	CITATIONS
91	Maternal Immunity Provides Protection against Pertussis in Newborn Piglets. Infection and Immunity, 2006, 74, 2619-2627.	2.2	58
92	Mucosal delivery of vaccines in domestic animals. Veterinary Research, 2006, 37, 487-510.	3.0	71
93	DNA vaccination in utero: a new approach to induce protective immunity in the newborn. Vaccine, 2004, 22, 1717-1727.	3.8	5
94	Oral DNA Vaccination In Utero Induces Mucosal Immunity and Immune Memory in the Neonate. Journal of Immunology, 2002, 168, 1877-1885.	0.8	49
95	Multiple intestinal â€~loops' provide an in vivo model to analyse multiple mucosal immune responses. Journal of Immunological Methods, 2001, 256, 19-33.	1.4	45
96	Fetal immunization by a DNA vaccine delivered into the oral cavity. Nature Medicine, 2000, 6, 929-932.	30.7	75
97	Recent advances in the use of DNA vaccines for the treatment of diseases of farmed animals. Advanced Drug Delivery Reviews, 2000, 43, 13-28.	13.7	45
98	Pseudorabies Virus Expressing Bovine Herpesvirus 1 Glycoprotein B Exhibits Altered Neurotropism and Increased Neurovirulence. Journal of Virology, 2000, 74, 817-827.	3.4	22
99	Potency of an experimental DNA vaccine against Aujeszky's disease in pigs. Veterinary Microbiology, 1999, 66, 1-13.	1.9	68