Qingbin Guo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11466659/publications.pdf

Version: 2024-02-01

218592 276775 1,915 70 26 41 h-index citations g-index papers 72 72 72 1787 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Some physicochemical properties of sage (Salvia macrosiphon) seedÂgum. Food Hydrocolloids, 2014, 35, 453-462.	5.6	150
2	Physicochemical characterization of a high molecular weight bioactive \hat{l}^2 -d-glucan from the fruiting bodies of Ganoderma lucidum. Carbohydrate Polymers, 2014, 101, 968-974.	5.1	100
3	Extraction, fractionation and physicochemical characterization of water-soluble polysaccharides from Artemisia sphaerocephala Krasch seed. Carbohydrate Polymers, 2011, 86, 831-836.	5.1	79
4	Non-starch polysaccharides from American ginseng: physicochemical investigation and structural characterization. Food Hydrocolloids, 2015, 44, 320-327.	5.6	78
5	Structural characterization of a low-molecular-weight heteropolysaccharide (glucomannan) isolated from Artemisia sphaerocephala Krasch. Carbohydrate Research, 2012, 350, 31-39.	1.1	73
6	Structural characterisation and immunomodulatory activity of polysaccharides from white asparagus skin. Carbohydrate Polymers, 2020, 227, 115314.	5.1	72
7	New studies on gum ghatti (Anogeissus latifolia) part II. Structure characterization of an arabinogalactan from the gum by 1D, 2D NMR spectroscopy and methylation analysis. Food Hydrocolloids, 2011, 25, 1991-1998.	5.6	71
8	Bioactive protein/peptides of flaxseed: A review. Trends in Food Science and Technology, 2019, 92, 184-193.	7.8	69
9	Fenugreek fibre in bread: Effects on dough development and bread quality. LWT - Food Science and Technology, 2016, 71, 274-280.	2.5	68
10	New studies on gum ghatti (Anogeissus latifolia) Part III: Structure characterization of a globular polysaccharide fraction by 1D, 2D NMR spectroscopy and methylation analysis. Food Hydrocolloids, 2011, 25, 1999-2007.	5.6	63
11	The bioactive compounds and biological functions of Asparagus officinalis L. – A review. Journal of Functional Foods, 2020, 65, 103727.	1.6	59
12	Exopolysaccharide produced by Streptococcus thermophiles S-3: Molecular, partial structural and rheological properties. Carbohydrate Polymers, 2018, 194, 132-138.	5.1	57
13	A systematical rheological study of polysaccharide from Sophora alopecuroides L. seeds. Carbohydrate Polymers, 2018, 180, 63-71.	5.1	57
14	Pectic polysaccharides from hawthorn: Physicochemical and partial structural characterization. Food Hydrocolloids, 2019, 90, 146-153.	5.6	47
15	Insights into the structure-bioactivity relationships of marine sulfated polysaccharides: A review. Food Hydrocolloids, 2022, 123, 107049.	5.6	46
16	Conformational properties of high molecular weight heteropolysaccharide isolated from seeds of Artemisia sphaerocephala Krasch. Food Hydrocolloids, 2013, 32, 155-161.	5.6	44
17	Structure characterization of exopolysaccharides from Lactobacillus casei LC2W from skim milk. Food Hydrocolloids, 2016, 56, 134-143.	5.6	42
18	Physicochemical properties and regulatory effects on db/db diabetic mice of \hat{l}^2 -glucans extracted from oat, wheat and barley. Food Hydrocolloids, 2014, 37, 60-68.	5.6	39

#	Article	IF	CITATIONS
19	Arabinoxylan from wheat bran: molecular degradation and functional investigation. Food Hydrocolloids, 2020, 107, 105914.	5.6	39
20	Structure characterization of high molecular weight heteropolysaccharide isolated from Artemisia sphaerocephala Krasch seed. Carbohydrate Polymers, 2011, 86, 742-746.	5.1	37
21	Structural characterisation and immunomodulatory activity of exopolysaccharides from liquid fermentation of Monascus purpureus (Hong Qu). Food Hydrocolloids, 2020, 103, 105636.	5.6	37
22	Understanding the structure–emulsification relationship of gum ghatti – A review of recent advances. Food Hydrocolloids, 2014, 42, 187-195.	5.6	34
23	Molecular insight on the binding of monascin to bovine serum albumin (BSA) and its effect on antioxidant characteristics of monascin. Food Chemistry, 2020, 315, 126228.	4.2	32
24	Fractionation, structural characteristics and immunomodulatory activity of polysaccharide fractions from asparagus (Asparagus officinalis L.) skin. Carbohydrate Polymers, 2021, 256, 117514.	5.1	31
25	Antioxidant effects of Artemis sphaerocephala Krasch. gum, on streptozotocin-induced type 2 diabetic rats. Food Hydrocolloids, 2011, 25, 207-213.	5.6	30
26	Rheological properties and stabilizing effects of high-temperature extracted flaxseed gum on oil/water emulsion systems. Food Hydrocolloids, 2021, 112, 106289.	5.6	29
27	Xyloglucans from flaxseed kernel cell wall: Structural and conformational characterisation. Carbohydrate Polymers, 2016, 151, 538-545.	5.1	26
28	Structural characterization and conformational properties of a polysaccharide isolated from Dendrobium nobile Lindl Food Hydrocolloids, 2020, 98, 104904.	5.6	25
29	Structural characterization and immunomodulatory activity of mycelium polysaccharide from liquid fermentation of Monascus purpureus (Hong Qu). Carbohydrate Polymers, 2021, 262, 117945.	5.1	22
30	Isolation, Structural, Functional, and Bioactive Properties of Cereal Arabinoxylan─A Critical Review. Journal of Agricultural and Food Chemistry, 2021, 69, 15437-15457.	2.4	21
31	Seed coat mucilages: Structural, functional/bioactive properties, and genetic information. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 2534-2559.	5.9	20
32	Structural investigation of a glycoprotein from gum ghatti. Carbohydrate Polymers, 2012, 89, 749-758.	5.1	19
33	Polysaccharide from Pleurotus nebrodensis: Physicochemical, structural characterization and in vitro fermentation characteristics. International Journal of Biological Macromolecules, 2020, 165, 1960-1969.	3.6	19
34	Structural characterisation of EPS of Streptococcus thermophilus S-3 and its application in milk fermentation. International Journal of Biological Macromolecules, 2021, 178, 263-269.	3.6	18
35	Catechin-grafted arabinoxylan conjugate: Preparation, structural characterization and property investigation. International Journal of Biological Macromolecules, 2021, 182, 796-805.	3.6	17
36	New studies on gum ghatti (Anogeissus latifolia) part 5: TheÂconformational properties of gum ghatti. Food Hydrocolloids, 2015, 43, 25-30.	5.6	16

#	Article	IF	CITATIONS
37	Immunomodulatory and antivirus activities of bioactive polysaccharides and structure-function relationship. Bioactive Carbohydrates and Dietary Fibre, 2022, 27, 100301.	1.5	16
38	Molecular and conformational properties of hemicellulose fiber gum from dried distillers grains with solubles. Food Hydrocolloids, 2018, 80, 53-59.	5.6	15
39	NMR and methylation analysis of hemicellulose purified from corn bran. Food Hydrocolloids, 2019, 94, 613-621.	5.6	13
40	Fluorescent labeling affected the structural/conformational properties of arabinoxylans. Carbohydrate Polymers, 2021, 265, 118064.	5.1	13
41	Tetra-detector size exclusion chromatography characterization of molecular and solution properties of soluble microbial polysaccharides from an anaerobic membrane bioreactor. Frontiers of Environmental Science and Engineering, 2017, 11, 1.	3.3	12
42	Structural characterisation of galacto-oligosaccharides (VITAGOSâ,,¢) sythesized by transgalactosylation of lactose. Bioactive Carbohydrates and Dietary Fibre, 2018, 14, 33-38.	1.5	12
43	Fourier Transform Infrared Spectroscopy (FTIR) for Carbohydrate Analysis. Springer Briefs in Molecular Science, 2018, , 69-71.	0.1	12
44	Grafted ferulic acid dose-dependently enhanced the apparent viscosity and antioxidant activities of arabinoxylan. Food Hydrocolloids, 2022, 128, 107557.	5.6	12
45	The MFFAPP Tanzania Efficacy Study Protocol: Newly Formulated, Extruded, Fortified Blended Foods for Food Aid. Current Developments in Nutrition, 2017, 1, e000315.	0.1	11
46	Depression of Fungal Polygalacturonase Activity in <i>Solanum lycopersicum</i> Contributes to Antagonistic Yeast-Mediated Fruit Immunity to <i>Botrytis</i> Journal of Agricultural and Food Chemistry, 2019, 67, 3293-3304.	2.4	11
47	Oligogalacturonide-accelerated healing of mechanical wounding in tomato fruit requires calcium-dependent systemic acquired resistance. Food Chemistry, 2021, 337, 127992.	4.2	11
48	The noncovalent conjugations of human serum albumin (HSA) with MS/AK and the effect on anti-oxidant capacity as well as anti-glycation activity of $\langle i \rangle$ Monascus $\langle i \rangle$ yellow pigments. Food and Function, 2021, 12, 3692-3704.	2.1	8
49	New studies on gum ghatti (Anogeissuslatifolia) part 6: Physicochemical characteristics of the protein moiety of gum ghatti. Food Hydrocolloids, 2015, 44, 237-243.	5.6	7
50	Newly formulated, protein quality-enhanced, extruded sorghum-, cowpea-, corn-, soya-, sugar- and oil-containing fortified-blended foods lead to adequate vitamin A and iron outcomes and improved growth compared with non-extruded CSB+ in rats. Journal of Nutritional Science, 2017, 6, e18.	0.7	7
51	Effect of oatmeal on texture, water mobility, and starch retrogradation properties of Chinese steamed bread. Cereal Chemistry, 2019, 96, 349-357.	1.1	7
52	Insight into the mechanisms of the excellent emulsification properties of whey protein isolate-arabinoxylan conjugates. Bioactive Carbohydrates and Dietary Fibre, 2022, 27, 100312.	1.5	7
53	In Vitro Fermentability of Soybean Oligosaccharides from Wastewater of Tofu Production. Polymers, 2022, 14, 1704.	2.0	7

A molecular modeling approach to understand the structure and conformation relationship of (Glc p) Tj ETQq0 0 0 rgBT /Overlock 10 Tf

#	Article	IF	CITATIONS
55	Extruded corn soy blends: physicochemical and molecular characterization. Journal of Cereal Science, 2018, 79, 486-493.	1.8	6
56	Methodology for Structural Analysis of Polysaccharides. Springer Briefs in Molecular Science, 2018, , .	0.1	6
57	Using of safflower seeds as a protein fortifier for shortbread. Food Hydrocolloids, 2020, 105, 105808.	5.6	6
58	Fungus Polygalacturonase-Generated Oligogalacturonide Restrains Fruit Softening in Ripening Tomato. Journal of Agricultural and Food Chemistry, 2022, 70, 759-769.	2.4	5
59	Structure, Classification and Modification of Polysaccharides. , 2021, , 204-219.		3
60	Polysaccharides From Dendrobium Officinal, Cordyceps Sinensis and Ganoderma: Structures and Bioactivities. Special Publication - Royal Society of Chemistry, 2014, , 303-318.	0.0	3
61	1D & 2D and Solid-State NMR. Springer Briefs in Molecular Science, 2018, , 53-63.	0.1	2
62	Conformational Properties of Flaxseed Rhamnogalacturonan-I and Correlation between Primary Structure and Conformation. Polymers, 2022, 14, 2667.	2.0	2
63	Strategies for Structural Characterization of Polysaccharides. Springer Briefs in Molecular Science, 2018, , 1-7.	0.1	1
64	Polysaccharide Extraction and Fractionation. Springer Briefs in Molecular Science, 2018, , 9-17.	0.1	1
65	MALDI-TOF-MS for Polysaccharides Analysis. Springer Briefs in Molecular Science, 2018, , 65-68.	0.1	0
66	Molecular Weight Distribution and Conformational Properties of Polysaccharides. Springer Briefs in Molecular Science, 2018, , 19-27.	0.1	0
67	Monosaccharide Composition Analysis. Springer Briefs in Molecular Science, 2018, , 29-36.	0.1	0
68	Linkage Pattern Analysis. Springer Briefs in Molecular Science, 2018, , 45-51.	0.1	0
69	Partial Acid Hydrolysis and Molecular Degradation. Springer Briefs in Molecular Science, 2018, , 37-43.	0.1	0
70	Detailed Experimental Procedures. Springer Briefs in Molecular Science, 2018, , 73-79.	0.1	0