Tatsuya Sueyoshi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11466385/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Human constitutive androstane receptor represses liver cancer development and hepatoma cell proliferation by inhibiting erythropoietin signaling. Journal of Biological Chemistry, 2022, 298, 101885.	3.4	13
2	Phenobarbital induces SLC13A5 expression through activation of PXR but not CAR in human primary hepatocytes. FASEB Journal, 2022, 36, .	0.5	0
3	Sex-specific expression mechanism of hepatic estrogen inactivating enzyme and transporters in diabetic women. Biochemical Pharmacology, 2021, 190, 114662.	4.4	6
4	Phenobarbital Induces SLC13A5 Expression through Activation of PXR but Not CAR in Human Primary Hepatocytes. Cells, 2021, 10, 3381.	4.1	5
5	Nuclear receptor phosphorylation in xenobiotic signal transduction. Journal of Biological Chemistry, 2020, 295, 15210-15225.	3.4	38
6	Ser100-Phosphorylated RORα Orchestrates CAR and HNF4α to Form Active Chromatin Complex in Response to Phenobarbital to Regulate Induction of CYP2B6. Molecular Pharmacology, 2020, 97, 191-201.	2.3	4
7	Nuclear receptor CAR-ERα signaling regulates the estrogen sulfotransferase gene in the liver. Scientific Reports, 2020, 10, 5001.	3.3	12
8	A phosphorylation-deficient mutant of retinoid X receptor \hat{I}_{\pm} at Thr 167 alters fasting response and energy metabolism in mice. Laboratory Investigation, 2019, 99, 1470-1483.	3.7	8
9	Phosphorylated Nuclear Receptor CAR Forms a Homodimer To Repress Its Constitutive Activity for Ligand Activation. Molecular and Cellular Biology, 2017, 37, .	2.3	31
10	Phosphorylation of Farnesoid X Receptor at Serine 154 Links Ligand Activation With Degradation. Molecular Endocrinology, 2016, 30, 1070-1080.	3.7	22
11	SLC13A5 Is a Novel Transcriptional Target of the Pregnane X Receptor and Sensitizes Drug-Induced Steatosis in Human Liver. Molecular Pharmacology, 2015, 87, 674-682.	2.3	68
12	Flame Retardant BDE-47 Effectively Activates Nuclear Receptor CAR in Human Primary Hepatocytes. Toxicological Sciences, 2014, 137, 292-302.	3.1	48
13	Phenobarbital Indirectly Activates the Constitutive Active Androstane Receptor (CAR) by Inhibition of Epidermal Growth Factor Receptor Signaling. Science Signaling, 2013, 6, ra31.	3.6	163
14	Garlic Extract Diallyl Sulfide (DAS) Activates Nuclear Receptor CAR to Induce the Sult1e1 Gene in Mouse Liver. PLoS ONE, 2011, 6, e21229.	2.5	36
15	Dietary Flavonoids Activate the Constitutive Androstane Receptor (CAR). Journal of Agricultural and Food Chemistry, 2010, 58, 2168-2173.	5.2	31
16	Dephosphorylation of Threonine 38 Is Required for Nuclear Translocation and Activation of Human Xenobiotic Receptor CAR (NR113). Journal of Biological Chemistry, 2009, 284, 34785-34792.	3.4	117
17	PPP1R16A, The Membrane Subunit of Protein Phosphatase 1β, Signals Nuclear Translocation of the Nuclear Receptor Constitutive Active/Androstane Receptor. Molecular Pharmacology, 2008, 73, 1113-1121.	2.3	41
18	Identification of <i>Ginkgo biloba</i> as a Novel Activator of Pregnane X Receptor. Drug Metabolism and Disposition, 2008, 36, 2270-2276.	3.3	59

TATSUYA SUEYOSHI

#	Article	IF	CITATIONS
19	The Peripheral Benzodiazepine Receptor Ligand 1-(2-Chlorophenyl-methylpropyl)-3-isoquinoline-carboxamide Is a Novel Antagonist of Human Constitutive Androstane Receptor. Molecular Pharmacology, 2008, 74, 443-453.	2.3	92
20	Nuclear Pregnane X Receptor Cross-talk with FoxA2 to Mediate Drug-induced Regulation of Lipid Metabolism in Fasting Mouse Liver. Journal of Biological Chemistry, 2007, 282, 9768-9776.	3.4	156
21	Relative Activation of Human Pregnane X Receptor versus Constitutive Androstane Receptor Defines Distinct Classes of CYP2B6 and CYP3A4 Inducers. Journal of Pharmacology and Experimental Therapeutics, 2007, 320, 72-80.	2.5	281
22	Differential Regulation of Hepatic CYP2B6 and CYP3A4 Genes by Constitutive Androstane Receptor but Not Pregnane X Receptor. Journal of Pharmacology and Experimental Therapeutics, 2006, 317, 1200-1209.	2.5	171
23	Thr176 regulates the activity of the mouse nuclear receptor CAR and is conserved in the NR11 subfamily members PXR and VDR. Biochemical Journal, 2005, 388, 623-630.	3.7	15
24	Transcriptional Regulation of Human UGT1A1 Gene Expression: Activated Glucocorticoid Receptor Enhances constitutive Androstane Receptor/Pregnane X Receptor-Mediated UDP-Glucuronosyltransferase 1A1 Regulation with Glucocorticoid Receptor-Interacting Protein 1. Molecular Pharmacology, 2005, 67, 845-855.	2.3	134
25	Regulation of the Human UGT1A1 Gene by Nuclear Receptors Constitutive Active/Androstane Receptor, Pregnane X Receptor, and Glucocorticoid Receptor. Methods in Enzymology, 2005, 400, 92-104.	1.0	50
26	Cytoplasmic Localization of Pregnane X Receptor and Ligand-dependent Nuclear Translocation in Mouse Liver. Journal of Biological Chemistry, 2004, 279, 49307-49314.	3.4	163
27	Human Constitutive Androstane Receptor Mediates Induction of CYP2B6 Gene Expression by Phenytoin. Journal of Biological Chemistry, 2004, 279, 29295-29301.	3.4	136
28	Drug-activated nuclear receptors CAR and PXR. Annals of Medicine, 2003, 35, 172-182.	3.8	161
29	Phenobarbital induction of drug/steroid-metabolizing enzymes and nuclear receptor CAR. Biochimica Et Biophysica Acta - General Subjects, 2003, 1619, 239-242.	2.4	60
30	A Novel Distal Enhancer Module Regulated by Pregnane X Receptor/Constitutive Androstane Receptor Is Essential for the Maximal Induction of CYP2B6 Gene Expression. Journal of Biological Chemistry, 2003, 278, 14146-14152.	3.4	195
31	Cytoplasmic Accumulation of the Nuclear Receptor CAR by a Tetratricopeptide Repeat Protein in HepG2 Cells. Molecular Pharmacology, 2003, 64, 1069-1075.	2.3	173
32	Glucocorticoid Receptor Enhancement of Pregnane X Receptor-Mediated CYP2B6 Regulation in Primary Human Hepatocytes. Drug Metabolism and Disposition, 2003, 31, 620-630.	3.3	89
33	Diverse Roles of the Nuclear Orphan Receptor CAR in Regulating Hepatic Genes in Response to Phenobarbital. Molecular Pharmacology, 2002, 61, 1-6.	2.3	446
34	Residue Threonine 350 Confers Steroid Hormone Responsiveness to the Mouse Nuclear Orphan Receptor CAR. Molecular Pharmacology, 2002, 61, 1284-1288.	2.3	23
35	Direct expression of fluorescent protein-tagged nuclear receptor CAR in mouse liver. Methods in Enzymology, 2002, 357, 205-213.	1.0	15
36	Identification of a Defect in the UGT1A1 Gene Promoter and Its Association with Hyperbilirubinemia. Biochemical and Biophysical Research Communications, 2002, 292, 492-497.	2.1	201

TATSUYA SUEYOSHI

#	Article	IF	CITATIONS
37	Nuclear Receptor CAR as a Regulatory Factor for the Sexually Dimorphic Induction of CYP2B1 Gene by Phenobarbital in Rat Livers. Molecular Pharmacology, 2001, 59, 278-284.	2.3	83
38	The phenobarbital response enhancer module in the human bilirubin UDP-glucuronosyltransferase UGT1A1 gene and regulation by the nuclear receptor CAR. Hepatology, 2001, 33, 1232-1238.	7.3	333
39	The Peptide Near the C Terminus Regulates Receptor CAR Nuclear Translocation Induced by Xenochemicals in Mouse Liver. Molecular and Cellular Biology, 2001, 21, 2838-2846.	2.3	152
40	Phenobarbital-Responsive Nuclear Translocation of the Receptor CAR in Induction of the <i>CYP2B</i> Gene. Molecular and Cellular Biology, 1999, 19, 6318-6322.	2.3	523
41	The Repressed Nuclear Receptor CAR Responds to Phenobarbital in Activating the Human CYP2B6 Gene. Journal of Biological Chemistry, 1999, 274, 6043-6046.	3.4	600
42	Crystal Structure of the Sulfotransferase Domain of Human Heparan SulfateN-Deacetylase/N-Sulfotransferase 1. Journal of Biological Chemistry, 1999, 274, 10673-10676.	3.4	128
43	A role of Lys614in the sulfotransferase activity of human heparan sulfateN-deacetylase/N-sulfotransferase. FEBS Letters, 1998, 433, 211-214.	2.8	48
44	The Nuclear Orphan Receptor CAR-Retinoid X Receptor Heterodimer Activates the Phenobarbital-Responsive Enhancer Module of the <i>CYP2B</i> Gene. Molecular and Cellular Biology, 1998, 18, 5652-5658.	2.3	678
45	Structural flexibility and functional versatility of mammalian P450 enzymes. FASEB Journal, 1996, 10, 683-689.	0.5	68
46	Isolation and characterization of ornitho-kininogen. FEBS Journal, 1987, 168, 493-499.	0.2	35
47	A new function of kininogens as thiol-proteinase inhibitors: inhibition of papain and cathepsins B, H and L by bovine, rat and human plasma kininogens. FEBS Letters, 1985, 182, 193-195.	2.8	130