Raymond T Bartus

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11465558/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Focal and dose-dependent neuroprotection in ALS mice following AAV2-neurturin delivery. Experimental Neurology, 2020, 323, 113091.	4.1	9
2	Long-term post-mortem studies following neurturin gene therapy in patients with advanced Parkinson's disease. Brain, 2020, 143, 960-975.	7.6	56
3	Clinical tests of neurotrophic factors for human neurodegenerative diseases, part 2: Where do we stand and where must we go next?. Neurobiology of Disease, 2017, 97, 169-178.	4.4	53
4	Clinical tests of neurotrophic factors for human neurodegenerative diseases, part 1: Where have we been and what have we learned?. Neurobiology of Disease, 2017, 97, 156-168.	4.4	71
5	Long-Term Safety of Patients with Parkinson's Disease Receiving rAAV2-Neurturin (CERE-120) Gene Transfer. Human Gene Therapy, 2016, 27, 522-527.	2.7	40
6	Trophic factors for Parkinson's disease: To live or let die. Movement Disorders, 2015, 30, 1715-1724.	3.9	55
7	Gene delivery of neurturin to putamen and substantia nigra in <scp>P</scp> arkinson disease: A doubleâ€blind, randomized, controlled trial. Annals of Neurology, 2015, 78, 248-257.	5.3	224
8	Gene therapy for Parkinson′s disease: a decade of progress supported by posthumous contributions from volunteer subjects. Neural Regeneration Research, 2015, 10, 1586.	3.0	9
9	Parkinson's Disease Gene Therapy: Success by Design Meets Failure by Efficacy. Molecular Therapy, 2014, 22, 487-497.	8.2	141
10	Disease duration and the integrity of the nigrostriatal system in Parkinson's disease. Brain, 2013, 136, 2419-2431.	7.6	965
11	Advancing neurotrophic factors as treatments for age-related neurodegenerative diseases: developing and demonstrating "clinical proof-of-concept―for AAV-neurturin (CERE-120) in Parkinson's disease. Neurobiology of Aging, 2013, 34, 35-61.	3.1	70
12	Enhanced neurotrophic distribution, cell signaling and neuroprotection following substantia nigral versus striatal delivery of AAV2-NRTN (CERE-120). Neurobiology of Disease, 2013, 58, 38-48.	4.4	39
13	Safety/feasibility of targeting the substantia nigra with AAV2-neurturin in Parkinson patients. Neurology, 2013, 80, 1698-1701.	1.1	178
14	Translating the therapeutic potential of neurotrophic factors to clinical â€~proof of concept': A personal saga achieving a career-long quest. Neurobiology of Disease, 2012, 48, 153-178.	4.4	25
15	Properly scaled and targeted AAV2-NRTN (neurturin) to the substantia nigra is safe, effective and causes no weight loss: Support for nigral targeting in Parkinson's disease. Neurobiology of Disease, 2011, 44, 38-52.	4.4	56
16	Gene transfer provides a practical means for safe, long-term, targeted delivery of biologically active neurotrophic factor proteins for neurodegenerative diseases. Drug Delivery and Translational Research, 2011, 1, 361-382.	5.8	26
17	Bioactivity of AAV2â€neurturin gene therapy (CEREâ€120): Differences between Parkinson's disease and nonhuman primate brains. Movement Disorders, 2011, 26, 27-36.	3.9	144
18	Gene delivery of AAV2-neurturin for Parkinson's disease: a double-blind, randomised, controlled trial. Lancet Neurology, The, 2010, 9, 1164-1172.	10.2	589

RAYMOND T BARTUS

#	Article	IF	CITATIONS
19	Intrastriatal CERE-120 (AAV-Neurturin) protects striatal and cortical neurons and delays motor deficits in a transgenic mouse model of Huntington's disease. Neurobiology of Disease, 2009, 34, 40-50.	4.4	53
20	Pharmaceutical treatment for cognitive deficits in Alzheimer's disease and other neurodegenerative conditions: exploring new territory using traditional tools and established maps. Psychopharmacology, 2009, 202, 15-36.	3.1	31
21	EXPRESSION, BIOACTIVITY, AND SAFETY 1 YEAR AFTER ADENO-ASSOCIATED VIRAL VECTOR TYPE 2–MEDIATED DELIVERY OF NEURTURIN TO THE MONKEY NIGROSTRIATAL SYSTEM SUPPORT CERE-120 FOR PARKINSON'S DISEASE. Neurosurgery, 2009, 64, 602-613.	1.1	75
22	Safety and tolerability of intraputaminal delivery of CERE-120 (adeno-associated virus serotype) Tj ETQq0 0 0 rgBT Neurology, The, 2008, 7, 400-408.	/Overlock 10.2	10 Tf 50 62 529
23	Therapeutic potential of CERE-110 (AAV2-NGF): Targeted, stable, and sustained NGF delivery and trophic activity on rodent basal forebrain cholinergic neurons. Experimental Neurology, 2008, 211, 574-584.	4.1	76
24	Transgene Expression, Bioactivity, and Safety of CERE-120 (AAV2-Neurturin) Following Delivery to the Monkey Striatum. Molecular Therapy, 2008, 16, 1737-1744.	8.2	68
25	Striatal Delivery of Neurturin by CERE-120, an AAV2 Vector for the Treatment of Dopaminergic Neuron Degeneration in Parkinson's Disease. Molecular Therapy, 2007, 15, 62-68.	8.2	143
26	Striatal delivery of CERE-120, an AAV2 vector encoding human neurturin, enhances activity of the dopaminergic nigrostriatal system in aged monkeys. Movement Disorders, 2007, 22, 1124-1132.	3.9	126
27	AAV2-mediated delivery of human neurturin to the rat nigrostriatal system: Long-term efficacy and tolerability of CERE-120 for Parkinson's disease. Neurobiology of Disease, 2007, 27, 67-76.	4.4	134
28	Delivery of neurturin by AAV2 (CERE-120)-mediated gene transfer provides structural and functional neuroprotection and neurorestoration in MPTP-treated monkeys. Annals of Neurology, 2006, 60, 706-715.	5.3	235
29	The Development of the Bradykinin Agonist Labradimil as a Means to Increase the Permeability of the Blood-Brain Barrier. Clinical Pharmacokinetics, 2001, 40, 105-123.	3.5	99
30	On Neurodegenerative Diseases, Models, and Treatment Strategies: Lessons Learned and Lessons Forgotten a Generation Following the Cholinergic Hypothesis. Experimental Neurology, 2000, 163, 495-529.	4.1	676
31	The Cholinergic Hypothesis a Generation Later. , 2000, , 3-45.		2
32	Use of CereportTM (RMP-7) to Increase Delivery of Carboplatin to Gliomas: Insight and Parameters for Intracarotid Infusion Via a Single-Lumen Cannula. Drug Delivery, 1999, 6, 15-21.	5.7	10
33	Oncolytic virus therapy of multiple tumors in the brain requires suppression of innate and elicited antiviral responses. Nature Medicine, 1999, 5, 881-887.	30.7	309
34	A Non-invasive System for Delivering Neural Growth Factors across the Blood-Brain Barrier: A Review. Reviews in the Neurosciences, 1998, 9, 31-55.	2.9	63
35	The Calpain Hypothesis of Neurodegeneration: Evidence for a Common Cytotoxic Pathway. Neuroscientist, 1997, 3, 314-327.	3.5	78
36	Unlocking the Blood–Brain Barrier: A Role for RMP-7 in Brain Tumor Therapy. Experimental Neurology, 1996, 141, 214-224.	4.1	88

RAYMOND T BARTUS

#	Article	IF	CITATIONS
37	General overview: Past contributions and future opportunities using aged nonhuman primates. Neurobiology of Aging, 1993, 14, 711-714.	3.1	5
38	Drugs to Treat Ageâ€Related Neurodegenerative Problems The Final Frontier of Medical Science?. Journal of the American Geriatrics Society, 1990, 38, 680-695.	2.6	78
39	Telencephalic cholinergic system of the new world monkey (Cebus apella): Morphological and cytoarchitectonic assessment and analysis of the projection to the amygdala. Journal of Comparative Neurology, 1989, 279, 528-545.	1.6	60
40	Nerve growth factor receptor immunoreactivity in the nonhuman primate (Cebus apella): Distribution, morphology, and colocalization with cholinergic enzymes. Journal of Comparative Neurology, 1988, 277, 465-486.	1.6	183
41	Lack of efficacy of clonidine on memory in aged cebus monkeys. Neurobiology of Aging, 1988, 9, 409-411.	3.1	22
42	Tetrahydroaminoacridine, 3,4 diaminopyridine and physostigmine: Direct comparison of effects on memory in aged primates. Neurobiology of Aging, 1988, 9, 351-356.	3.1	60
43	Behavioral Models of Aging in Nonhuman Primates. , 1988, , 325-392.		18
44	On Possible Relationships between Alzheimer's Disease, Age-Related Memory Loss and the Development of Animal Models. , 1987, , 129-139.		1
45	Ageâ€associated memory impairment: Proposed diagnostic criteria and measures of clinical change — report of a national institute of mental health work group. Developmental Neuropsychology, 1986, 2, 261-276.	1.4	852
46	Behavioral recovery following bilateral lesions of the nucleus basalis does not occur spontaneously. Pharmacology Biochemistry and Behavior, 1986, 24, 1287-1292.	2.9	48
47	The effects of aging and dementia on concept formation as measured on an objectâ€sorting task. Developmental Neuropsychology, 1986, 2, 65-72.	1.4	14
48	Cognitive decline in advanced age: Future directions for the psychometric differentiation of normal and pathological age changes in cognitive function. Developmental Neuropsychology, 1986, 2, 309-322.	1.4	30
49	Regional Differences in the Coupling of Muscarinic Receptors to Inositol Phospholipid Hydrolysis in Guinea Pig Brain. Journal of Neurochemistry, 1985, 45, 1085-1095.	3.9	149
50	Selective memory loss following nucleus basalis lesions: Long term behavioral recovery despite persistent cholinergic deficiencies. Pharmacology Biochemistry and Behavior, 1985, 23, 125-135.	2.9	243
51	The Cholinergic Hypothesis: A Historical Overview, Current Perspective, and Future Directions. Annals of the New York Academy of Sciences, 1985, 444, 332-358.	3.8	334
52	Differential Stimulation of Inositol Phospholipid Turnover in Brain by Analogs of Oxotremorine. Journal of Neurochemistry, 1984, 43, 1171-1179.	3.9	129
53	Effects of aging and dementia upon recent visuospatial memory. Neurobiology of Aging, 1984, 5, 275-283.	3.1	109
54	Presynaptic cholinergic mechanisms in brain of aged rats with memory impairments. Neurobiology of Aging, 1981, 2, 99-104.	3.1	140

RAYMOND T BARTUS

#	Article	IF	CITATIONS
55	Memory Deficits in Aged Cebus Monkeys and Facilitation With Central Cholinomimetics. Neurobiology of Aging, 1980, 1, 145-152.	3.1	172
56	The effects of blood sludging upon short-term memory in rats and rhesus monkeys: An evaluation of its role in age-related cognitive declines. Physiology and Behavior, 1979, 22, 715-722.	2.1	2
57	Four Stimulants of the Central Nervous System: Effects on Short-Term Memory in Young versus Aged Monkeys*. Journal of the American Geriatrics Society, 1979, 27, 289-297.	2.6	34
58	Short-term memory in the rhesus monkey: Effects of dopamine blockade via acute haloperidol administration. Pharmacology Biochemistry and Behavior, 1978, 9, 353-357.	2.9	54
59	Evidence for a direct cholinergic involvement in the scopolamine-induced amnesia in monkeys: Effects of concurrent administration of physostigmine and methylphenidate with scopolamine. Pharmacology Biochemistry and Behavior, 1978, 9, 833-836.	2.9	176
60	Primate information processing under sodium pentobarbital and chlorpromazine: Differential drug effects with tachistoscopically presented discriminative stimuli. Psychopharmacology, 1977, 53, 249-254.	3.1	5
61	Effects of postresponse visual stimuli on visual discrimination learning in the rhesus monkey. Learning and Motivation, 1976, 7, 431-445.	1.2	4
62	Short-term memory in the rhesus monkey: Disruption from the anti-cholinergic scopolamine. Pharmacology Biochemistry and Behavior, 1976, 5, 39-46.	2.9	319
63	Impairments in primate information processing resulting from nitrogen narcosis. Physiology and Behavior, 1974, 12, 797-804.	2.1	4
64	Stimulus information and primate discrimination learning: The influence of postresponse stimulus information. Learning and Motivation, 1973, 4, 305-313.	1.2	5
65	Stimulus information and primate discrimination learning: Utilization of preresponse stimulus information following acquisition Journal of Comparative and Physiological Psychology, 1972, 79, 432-437.	1.8	7
66	Stimulus information and primate discrimination learning: Preresponse utilization of stimulus information Journal of Comparative and Physiological Psychology, 1971, 77, 200-205.	1.8	8
67	APDA: A discontiguous S-R automated primate discrimination apparatus. Behavior Research Methods, 1969, 1, 259-262.	4.0	11