
James W Vickers

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11465478/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Polyoxometalate water oxidation catalysts and the production of green fuel. Chemical Society Reviews, 2012, 41, 7572.	38.1	678
2	Efficient Light-Driven Carbon-Free Cobalt-Based Molecular Catalyst for Water Oxidation. Journal of the American Chemical Society, 2011, 133, 2068-2071.	13.7	336
3	An Exceptionally Fast Homogeneous Carbon-Free Cobalt-Based Water Oxidation Catalyst. Journal of the American Chemical Society, 2014, 136, 9268-9271.	13.7	260
4	Differentiating Homogeneous and Heterogeneous Water Oxidation Catalysis: Confirmation that [Co ₄ (H ₂ O) ₂ (α-PW ₉ O ₃₄) ₂] ^{ Is a Molecular Water Oxidation Catalyst. Journal of the American Chemical Society, 2013, 135, 14110-14118.}	10–13.7	^J P> 196
5	A nickel containing polyoxometalate water oxidation catalyst. Dalton Transactions, 2012, 41, 13043.	3.3	111
6	Polyoxometalates in the Design of Effective and Tunable Water Oxidation Catalysts. Israel Journal of Chemistry, 2011, 51, 238-246.	2.3	37
7	Collecting meaningful early-time kinetic data in homogeneous catalytic water oxidation with a sacrificial oxidant. Physical Chemistry Chemical Physics, 2014, 16, 11942-11949.	2.8	16
8	Structural and mechanistic studies of tunable, stable, fast multi-cobalt water oxidation catalysts. Proceedings of SPIE, 2011, , .	0.8	1
9	Multi-electron Transfer Catalysts for Air-Based Organic Oxidations and Water Oxidation. NATO Science for Peace and Security Series B: Physics and Biophysics. 2012. , 229-242.	0.3	0