
Usha Gundimeda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11463687/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Laminin-1 induces endocytosis of 67KDa laminin receptor and protects Neuroscreen-1 cells against death induced by serum withdrawal. Biochemical and Biophysical Research Communications, 2018, 495, 230-237.	2.1	15
2	P1â€203: 67KDA LAMININ RECEPTOR AS A MOLECULAR TARGET FOR GREEN TEA POLYPHENOL EPIGALLOCATECHINâ€3â€GALLATE AGAINST βâ€AMYLOIDâ€INDUCED NEURONAL CELL DEATH. Alzheimer's and Dementia, 2018, 14, P357.	0.8	0
3	Redox regulation of protein kinase C by selenometabolites and selenoprotein thioredoxin reductase limits cancer prevention by selenium. Free Radical Biology and Medicine, 2018, 127, 55-61.	2.9	18
4	Role of Neuropilin-1/Semaphorin-3A signaling in the functional and morphological integrity of the cochlea. PLoS Genetics, 2017, 13, e1007048.	3.5	16
5	Imbalance in Protein Thiol Redox Regulation and Cancer-Preventive Efficacy of Selenium. , 2016, 2, 272-289.		9
6	Counteraction of Nogo-A and axonal growth inhibitors by green tea polyphenols and other natural products. Neural Regeneration Research, 2016, 11, 545.	3.0	3
7	Polyphenols from green tea prevent antineuritogenic action of Nogoâ€A via 67â€ <scp>kD</scp> a laminin receptor and hydrogen peroxide. Journal of Neurochemistry, 2015, 132, 70-84.	3.9	28
8	Green tea catechins potentiate the neuritogenic action of brain-derived neurotrophic factor: Role of 67-kDa laminin receptor and hydrogen peroxide. Biochemical and Biophysical Research Communications, 2014, 445, 218-224.	2.1	60
9	Methods for Studying Oxidative Regulation of Protein Kinase C. Methods in Enzymology, 2013, 528, 79-98.	1.0	6
10	Green Tea Polyphenols Precondition against Cell Death Induced by Oxygen-Glucose Deprivation via Stimulation of Laminin Receptor, Generation of Reactive Oxygen Species, and Activation of Protein Kinase Clµ. Journal of Biological Chemistry, 2012, 287, 34694-34708.	3.4	60
11	Green tea polyphenols potentiate the action of nerve growth factor to induce neuritogenesis: Possible role of reactive oxygen species. Journal of Neuroscience Research, 2010, 88, 3644-3655.	2.9	54
12	Negation of the cancer-preventive actions of selenium by over-expression of protein kinase CÂ and selenoprotein thioredoxin reductase. Carcinogenesis, 2009, 30, 1553-1561.	2.8	15
13	Locally Generated Methylseleninic Acid Induces Specific Inactivation of Protein Kinase C Isoenzymes. Journal of Biological Chemistry, 2008, 283, 34519-34531.	3.4	47
14	A Direct Redox Regulation of Protein Kinase C Isoenzymes Mediates Oxidant-induced Neuritogenesis in PC12 Cells. Journal of Biological Chemistry, 2008, 283, 14430-14444.	3.4	41
15	The synthetic estrogen 4-estren-3α,17β-diol (estren) induces estrogen-like neuroprotection. Neurobiology of Disease, 2005, 19, 331-339.	4.4	16
16	Estrogen activates protein kinase C in neurons: role in neuroprotection. Journal of Neurochemistry, 2003, 84, 1340-1348.	3.9	114
17	Protein Kinase C as a Molecular Target for Cancer Prevention by Selenocompounds. Nutrition and Cancer, 2001, 40, 55-63.	2.0	34
18	Differential distribution of protein phosphatase 2A in human breast carcinoma cell lines and its relation to estrogen receptor status. Cancer Letters, 1999, 136, 143-151.	7.2	22

Usha Gundimeda

#	Article	IF	CITATIONS
19	Tumor Promoter Benzoyl Peroxide Induces Sulfhydryl Oxidation in Protein Kinase C: Its Reversibility Is Related to the Cellular Resistance to Peroxide-Induced Cytotoxicity. Archives of Biochemistry and Biophysics, 1999, 363, 246-258.	3.0	17
20	Role of Protein Kinase C in Basal and Hydrogen Peroxide-Stimulated NF-κB Activation in the Murine Macrophage J774A.1 Cell Line. Archives of Biochemistry and Biophysics, 1998, 350, 79-86.	3.0	51
21	Verapamil Inhibits Proliferation, Migration and Protein Kinase C Activity in Human Retinal Pigment Epithelial Cells. Experimental Eye Research, 1998, 67, 45-52.	2.6	27
22	Hypericin inhibits choroidal endothelial cell proliferation and cord formation in vitro. Current Eye Research, 1997, 16, 967-972.	1.5	20
23	Cancer-Preventive Selenocompounds Induce a Specific Redox Modification of Cysteine-Rich Regions in Ca2+- Dependent Isoenzymes of Protein Kinase C. Archives of Biochemistry and Biophysics, 1997, 348, 25-36.	3.0	80
24	Selenocompounds Induce a Redox Modulation of Protein Kinase C in the Cell, Compartmentally Independent from Cytosolic Glutathione: Its Role in Inhibition of Tumor Promotion. Archives of Biochemistry and Biophysics, 1997, 348, 37-48.	3.0	78
25	Protein Kinase C as a Sensor for Oxidative Stress in Tumor Promotion and Chemoprevention. , 1997, , 157-180.		3
26	Tamoxifen Modulates Protein Kinase C via Oxidative Stress in Estrogen Receptor-negative Breast Cancer Cells. Journal of Biological Chemistry, 1996, 271, 13504-13514.	3.4	147
27	Hypericin inhibits cell growth and induces apoptosis in retinal pigment epithelial cells: possible involvement of protein kinase C. Current Eye Research, 1996, 15, 255-262.	1.5	57
28	[14] Modifications of cysteine-rich regions in protein kinase C induced by oxidant tumor promoters and enzyme-specific inhibitors. Methods in Enzymology, 1995, 252, 132-146.	1.0	46
29	Migration of retinal pigment epithelium cells in vitro is regulated by protein kinase C. Experimental Eye Research, 1995, 60, 683-695.	2.6	50
30	Nonphorbol tumor promoters okadaic acid and calyculin-A induce membrane translocation of protein kinase C. Biochemical and Biophysical Research Communications, 1992, 189, 950-957.	2.1	26
31	Irreversible oxidative inactivation of protein kinase C by photosensitive inhibitor calphostin C. FEBS Letters, 1992, 314, 149-154.	2.8	85
32	Rapid filtration assays for protein kinase C activity andphorbol ester binding using multiwell plates with fitted filtration discs. Analytical Biochemistry, 1992, 206, 24-35.	2.4	46