Dave Higdon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11462466/publications.pdf

Version: 2024-02-01

		1040056	1199594	
15	1,474 citations	9	12	
papers	citations	h-index	g-index	
15	15	15	1498	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	Forecasting influenza activity using machine-learned mobility map. Nature Communications, 2021, 12, 726.	12.8	30
2	Optimizing spatial allocation of seasonal influenza vaccine under temporal constraints. PLoS Computational Biology, 2019, 15, e1007111.	3.2	44
3	Using data-driven agent-based models for forecasting emerging infectious diseases. Epidemics, 2018, 22, 43-49.	3.0	133
4	Calibrating a Stochastic, Agent-Based Model Using Quantile-Based Emulation. SIAM-ASA Journal on Uncertainty Quantification, 2018, 6, 1685-1706.	2.0	24
5	Gaussian Process-Based Sensitivity Analysis and Bayesian Model Calibration with GPMSA., 2017,, 1867-1907.		1
6	Gaussian Process-Based Sensitivity Analysis and Bayesian Model Calibration with GPMSA., 2015, , 1-41.		2
7	Discussion of "Computer Experiments with Qualitative and Quantitative Variables: A Review and Reexamination― Quality Engineering, 2015, 27, 14-16.	1.1	2
8	A Bayesian approach for parameter estimation and prediction using a computationally intensive model. Journal of Physics G: Nuclear and Particle Physics, 2015, 42, 034009.	3.6	36
9	Calibration of tuning parameters in the FRAPCON model. Annals of Nuclear Energy, 2013, 52, 95-102.	1.8	9
10	Computer Model Calibration Using the Ensemble Kalman Filter. Technometrics, 2013, 55, 488-500.	1.9	20
11	Comments on: A general science-based framework forÂdynamical spatio-temporal models. Test, 2010, 19, 462-465.	1.1	1
12	Computer Model Calibration Using High-Dimensional Output. Journal of the American Statistical Association, 2008, 103, 570-583.	3.1	644
13	Comment on article by Sans $ ilde{A}^3$ et al. [MR2383247]. Bayesian Analysis, 2008, 3, .	3.0	1
14	Combining experimental data and computer simulations, with an application to flyer plate experiments. Bayesian Analysis, 2006, $1,765$.	3.0	66
15	Combining Field Data and Computer Simulations for Calibration and Prediction. SIAM Journal of Scientific Computing, 2004, 26, 448-466.	2.8	461