
Sebyung Kang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1146237/publications.pdf Version: 2024-02-01

SERVING KANC

#	Article	IF	CITATIONS
1	Construction of SARS-CoV-2 virus-like particles in plant. Scientific Reports, 2022, 12, 1005.	1.6	26
2	Application of periostin peptide-decorated self-assembled protein cage nanoparticles for therapeutic angiogenesis. BMB Reports, 2022, 55, 175-180.	1.1	4
3	TRAIL & EGFR affibody dual-display on a protein nanoparticle synergistically suppresses tumor growth. Journal of Controlled Release, 2022, 349, 367-378.	4.8	12
4	Accessibility-dependent topology studies of membrane proteins using a SpyTag/SpyCatcher protein-ligation system. International Journal of Biological Macromolecules, 2021, 175, 171-178.	3.6	5
5	Development of HER2-Targeting-Ligand-Modified Albumin Nanoparticles Based on the SpyTag/SpyCatcher System for Photothermal Therapy. Biomacromolecules, 2021, 22, 2649-2658.	2.6	13
6	Load and Display: Engineering Encapsulin as a Modular Nanoplatform for Protein-Cargo Encapsulation and Protein-Ligand Decoration Using Split Intein and SpyTag/SpyCatcher. Biomacromolecules, 2021, 22, 3028-3039.	2.6	25
7	Target-switchable Gd(III)-DOTA/protein cage nanoparticle conjugates with multiple targeting affibody molecules as target selective T1 contrast agents for high-field MRI. Journal of Controlled Release, 2021, 335, 269-280.	4.8	14
8	Application of Periostin Peptide-Decorated Self-Assembled Protein Cage Nanoparticles for Therapeutic Angiogenesis. BMB Reports, 2021, , .	1.1	0
9	Selective and Effective Cancer Treatments using Target‣witchable Intracellular Bacterial Toxin Delivery Systems. Advanced Therapeutics, 2020, 3, 2000043.	1.6	7
10	Development of Recombinant Immunoglobulin G-Binding Luciferase-Based Signal Amplifiers in Immunoassays. Analytical Chemistry, 2020, 92, 5473-5481.	3.2	6
11	HRP-conjugated plug-and-playable IgG-binding nanobodies as secondary antibody mimics in immunoassays. Sensors and Actuators B: Chemical, 2020, 320, 128312.	4.0	14
12	Development of targetâ€ŧunable P22 VLPâ€based delivery nanoplatforms using bacterial superglue. Biotechnology and Bioengineering, 2019, 116, 2843-2851.	1.7	45
13	Protein Cage Nanoparticles as Delivery Nanoplatforms. Advances in Experimental Medicine and Biology, 2018, 1064, 27-43.	0.8	24
14	Cloaking nanoparticles with protein corona shield for targeted drug delivery. Nature Communications, 2018, 9, 4548.	5.8	297
15	Engineering Tunable Dual Functional Protein Cage Nanoparticles Using Bacterial Superglue. Biomacromolecules, 2018, 19, 2896-2904.	2.6	49
16	Fabrication of Nanoreaction Clusters with Dualâ€Functionalized Protein Cage Nanobuilding Blocks. Small, 2018, 14, e1801488.	5.2	24
17	Nickel-Catalyzed Azide–Alkyne Cycloaddition To Access 1,5-Disubstituted 1,2,3-Triazoles in Air and Water. Journal of the American Chemical Society, 2017, 139, 12121-12124.	6.6	127
18	Effective Delivery of Antigen–Encapsulin Nanoparticle Fusions to Dendritic Cells Leads to Antigen-Specific Cytotoxic T Cell Activation and Tumor Rejection. ACS Nano, 2016, 10, 7339-7350.	7.3	84

SEBYUNG KANG

#	Article	IF	CITATIONS
19	Covalent Conjugation of Small-Molecule Adjuvants to Nanoparticles Induces Robust Cytotoxic T Cell Responses via DC Activation. Bioconjugate Chemistry, 2016, 27, 2007-2013.	1.8	28
20	Plug-and-playable fluorescent cell imaging modular toolkits using the bacterial superglue, SpyTag/SpyCatcher. Chemical Communications, 2016, 52, 14051-14054.	2.2	35
21	A Recombinant Secondary Antibody Mimic as a Target-specific Signal Amplifier and an Antibody Immobilizer in Immunoassays. Scientific Reports, 2016, 6, 24159.	1.6	11
22	Development of an antibody-binding modular nanoplatform for antibody-guided targeted cell imaging and delivery. RSC Advances, 2016, 6, 19208-19213.	1.7	22
23	Lumazine Synthase Protein Nanoparticle-Gd(III)-DOTA Conjugate as a T1 contrast agent for high-field MRI. Scientific Reports, 2015, 5, 15656.	1.6	29
24	An enhanced ascorbate peroxidase 2/antibody-binding domain fusion protein (APEX2–ABD) as a recombinant target-specific signal amplifier. Chemical Communications, 2015, 51, 10945-10948.	2.2	18
25	Surface Plasmon Resonance: A Versatile Technique for Biosensor Applications. Sensors, 2015, 15, 10481-10510.	2.1	917
26	Mesoporous monoliths of inverse bicontinuous cubic phases of block copolymer bilayers. Nature Communications, 2015, 6, 6392.	5.8	57
27	Lumazine synthase protein cage nanoparticles as antigen delivery nanoplatforms for dendritic cell-based vaccine development. Clinical and Experimental Vaccine Research, 2014, 3, 227.	1.1	44
28	Polyvalent Display of Monosaccharides on Ferritin Protein Cage Nanoparticles for the Recognition and Binding of Cell‧urface Lectins. Macromolecular Bioscience, 2014, 14, 619-625.	2.1	15
29	Genetically engineering encapsulin protein cage nanoparticle as a SCC-7 cell targeting optical nanoprobe. Biomaterials Research, 2014, 18, 21.	3.2	34
30	A variant of green fluorescent protein exclusively deposited to active intracellular inclusion bodies. Microbial Cell Factories, 2014, 13, 68.	1.9	12
31	Ferritin protein cage nanoparticles as versatile antigen delivery nanoplatforms for dendritic cell (DC)-based vaccine development. Nanomedicine: Nanotechnology, Biology, and Medicine, 2014, 10, 561-569.	1.7	92
32	Development of P22 Viral Capsid Nanocomposites as Antiâ€ <scp>C</scp> ancer Drug, Bortezomib (<scp>BTZ</scp>), Delivery Nanoplatforms. Macromolecular Bioscience, 2014, 14, 557-564.	2.1	27
33	Colloidal inverse bicontinuous cubic membranes of block copolymers with tunable surface functional groups. Nature Chemistry, 2014, 6, 534-541.	6.6	129
34	Developing Genetically Engineered Encapsulin Protein Cage Nanoparticles as a Targeted Delivery Nanoplatform. Biomacromolecules, 2014, 15, 3794-3801.	2.6	116
35	Lumazine synthase protein cage nanoparticles as modular delivery platforms for targeted drug delivery. RSC Advances, 2014, 4, 48596-48600.	1.7	41
36	Overexpression and self-assembly of virus-like particles in Nicotiana benthamiana by a single-vector DNA replicon system. Applied Microbiology and Biotechnology, 2014, 98, 8281-8290.	1.7	18

SEBYUNG KANG

#	Article	IF	CITATIONS
37	Natural Polypeptide-Based Supramolecular Nanogels for Stable Noncovalent Encapsulation. Biomacromolecules, 2013, 14, 3515-3522.	2.6	49
38	Fabrication of uniform layer-by-layer assemblies with complementary protein cage nanobuilding blocks via simple His-tag/metal recognition. Journal of Materials Chemistry B, 2013, 1, 4504.	2.9	21
39	Implementation of P22 Viral Capsids As Intravascular Magnetic Resonance <i>T</i> ₁ Contrast Conjugates via Site-Selective Attachment of Gd(III)-Chelating Agents. Biomacromolecules, 2013, 14, 2332-2339.	2.6	45
40	Glucose-Responsive Disassembly of Polymersomes of Sequence-Specific Boroxole-Containing Block Copolymers under Physiologically Relevant Conditions. ACS Macro Letters, 2012, 1, 1194-1198.	2.3	90
41	Incorporation of Thrombin Cleavage Peptide into a Protein Cage for Constructing a Protease-Responsive Multifunctional Delivery Nanoplatform. Biomacromolecules, 2012, 13, 4057-4064.	2.6	33
42	Development of Proteinâ€Cageâ€Based Delivery Nanoplatforms by Polyvalently Displaying <i>β</i> â€Cyclodextrins on the Surface of Ferritins Through Copper(I)â€Catalyzed Azide/Alkyne Cycloaddition. Macromolecular Bioscience, 2012, 12, 1452-1458.	2.1	19
43	Monosaccharide-Responsive Release of Insulin from Polymersomes of Polyboroxole Block Copolymers at Neutral pH. Journal of the American Chemical Society, 2012, 134, 4030-4033.	6.6	205
44	Site-Directed Coordination Chemistry with P22 Virus-like Particles. Langmuir, 2012, 28, 1998-2006.	1.6	38
45	Developing an antibody-binding protein cage as a molecular recognition drug modular nanoplatform. Biomaterials, 2012, 33, 5423-5430.	5.7	66
46	Structure, Energetics, and Dynamics of Binding Coactivator Peptide to the Human Retinoid X Receptor α Ligand Binding Domain Complex with 9- <i>cis</i> -Retinoic Acid. Biochemistry, 2011, 50, 93-105.	1.2	23
47	Biomimetic FePt nanoparticle synthesis within Pyrococcus furiosus ferritins and their layer-by-layer formation. Soft Matter, 2011, 7, 11078.	1.2	24
48	A Retroviral Chimeric Capsid Protein Reveals the Role of the N-Terminal β-Hairpin in Mature Core Assembly. Journal of Molecular Biology, 2011, 410, 641-652.	2.0	29
49	Hydrogen/Deuterium Exchange Analysis of HIV-1 Capsid Assembly and Maturation. Structure, 2010, 18, 1483-1491.	1.6	45
50	Targeted Delivery of a Photosensitizer to <i>Aggregatibacter actinomycetemcomitans</i> Biofilm. Antimicrobial Agents and Chemotherapy, 2010, 54, 2489-2496.	1.4	30
51	Some Enzymes Just Need a Space of Their Own. Science, 2010, 327, 42-43.	6.0	31
52	A Docking Model Based on Mass Spectrometric and Biochemical Data Describes Phage Packaging Motor Incorporation. Molecular and Cellular Proteomics, 2010, 9, 1764-1773.	2.5	31
53	Size and Crystallinity in Protein-Templated Inorganic Nanoparticles. Chemistry of Materials, 2010, 22, 4612-4618.	3.2	37
54	Implementation of P22 Viral Capsids as Nanoplatforms. Biomacromolecules, 2010, 11, 2804-2809.	2.6	87

SEBYUNG KANG

#	Article	IF	CITATIONS
55	The ferritin superfamily: Supramolecular templates for materials synthesis. Biochimica Et Biophysica Acta - General Subjects, 2010, 1800, 834-845.	1.1	210
56	Bio-templated CdSe nanoparticle synthesis in a cage shaped protein, Listeria-Dps, and their two dimensional ordered array self-assembly. Chemical Communications, 2010, 46, 8797.	2.2	47
57	From Metal Binding to Nanoparticle Formation: Monitoring Biomimetic Iron Oxide Synthesis within Protein Cages using Mass Spectrometry. Angewandte Chemie - International Edition, 2009, 48, 4772-4776.	7.2	26
58	Synthesis of biotinâ€ŧagged chemical crossâ€ŀinkers and their applications for mass spectrometry. Rapid Communications in Mass Spectrometry, 2009, 23, 1719-1726.	0.7	52
59	Janus-like Protein Cages. Spatially Controlled Dual-Functional Surface Modifications of Protein Cages. Nano Letters, 2009, 9, 2360-2366.	4.5	47
60	A Streptavidinâ^'Protein Cage Janus Particle for Polarized Targeting and Modular Functionalization. Journal of the American Chemical Society, 2009, 131, 9164-9165.	6.6	63
61	Development of Bacteriophage P22 as a Platform for Molecular Display: Genetic and Chemical Modifications of the Procapsid Exterior Surface. ChemBioChem, 2008, 9, 514-518.	1.3	41
62	Monitoring Biomimetic Platinum Nanocluster Formation Using Mass Spectrometry and Clusterâ€Dependent H ₂ Production. Angewandte Chemie - International Edition, 2008, 47, 7845-7848.	7.2	40
63	Probing Conserved Helical Modules of Portal Complexes by Mass Spectrometry-based Hydrogen/Deuterium Exchange. Journal of Molecular Biology, 2008, 381, 772-784.	2.0	13
64	Controlled Assembly of Bifunctional Chimeric Protein Cages and Composition Analysis Using Noncovalent Mass Spectrometry. Journal of the American Chemical Society, 2008, 130, 16527-16529.	6.6	69
65	Subunit Conformations and Assembly States of a DNA-translocating Motor: The Terminase of Bacteriophage P22. Journal of Molecular Biology, 2007, 374, 817-836.	2.0	43
66	Identification of Subunitâ ^{~'} Subunit Interactions in Bacteriophage P22 Procapsids by Chemical Cross-linking and Mass Spectrometry. Journal of Proteome Research, 2006, 5, 370-377.	1.8	49
67	Domain Study of Bacteriophage P22 Coat Protein and Characterization of the Capsid Lattice Transformation by Hydrogen/Deuterium Exchange. Journal of Molecular Biology, 2005, 347, 935-948.	2.0	41