George Amponsah Annor

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/114621/publications.pdf

Version: 2024-02-01

37 papers 1,033 citations

15 h-index 433756 31 g-index

40 all docs

40 docs citations

40 times ranked

1020 citing authors

#	Article	IF	CITATIONS
1	Progress on breeding and food processing efforts to improve chemical composition and functionality of intermediate wheatgrass (<i>Thinopyrum intermedium</i>) for the food industry. Cereal Chemistry, 2022, 99, 235-252.	1.1	6
2	Impact of plasma reactive species on the structure and functionality of pea protein isolate. Food Chemistry, 2022, 371, 131135.	4.2	31
3	The effect of tempering on protein properties and arabinoxylan contents of intermediate wheatgrass (<i>Thinopyrum intermedium</i>) flour. Cereal Chemistry, 2022, 99, 144-156.	1.1	1
4	Structural characterization and enzymatic hydrolysis of radio frequency cold plasma treated starches. Journal of Food Science, 2022, 87, 686-698.	1.5	9
5	Cold plasma technologies: Their effect on starch properties and industrial scale-up for starch modification. Current Research in Food Science, 2022, 5, 451-463.	2.7	41
6	Variability in changes of acrylamide precursors during nixtamalization for masa production. LWT - Food Science and Technology, 2022, 161 , 113400 .	2.5	0
7	Optimizing the extrusion conditions for the production of expanded intermediate wheatgrass (<i>Thinopyrum intermedium</i>) products. Journal of Food Science, 2022, 87, 3496-3512.	1.5	8
8	Genetic characterization of flour quality and breadâ€making traits in a spring wheat nested association mapping population. Crop Science, 2021, 61, 1168-1183.	0.8	4
9	Multiscale characterization and micromechanical modeling of crop stem materials. Biomechanics and Modeling in Mechanobiology, 2021, 20, 69-91.	1.4	11
10	Effect of Bran Pre-Treatment with Endoxylanase on the Characteristics of Intermediate Wheatgrass (Thinopyrum intermedium) Bread. Foods, 2021, 10, 1464.	1.9	6
11	Predicting moisture content during maize nixtamalization using machine learning with NIR spectroscopy. Theoretical and Applied Genetics, 2021, 134, 3743-3757.	1.8	3
12	Potential of Cold Plasma Technology in Ensuring the Safety of Foods and Agricultural Produce: A Review. Foods, 2020, 9, 1435.	1.9	66
13	Variation in Lignin, Cell Wall-Bound <i>p</i> -Coumaric, and Ferulic Acid in the Nodes and Internodes of Cereals and Their Impact on Lodging. Journal of Agricultural and Food Chemistry, 2020, 68, 12569-12576.	2.4	10
14	Tempering Improves Flour Properties of Refined Intermediate Wheatgrass (Thinopyrum intermedium). Foods, 2019, 8, 337.	1.9	6
15	Foodâ€Grade Maize Composition, Evaluation, and Genetics for Masaâ€Based Products. Crop Science, 2019, 59, 1392-1405.	0.8	15
16	Modification of cereal and tuber waxy starches with radio frequency cold plasma and its effects on waxy starch properties. Carbohydrate Polymers, 2019, 223, 115075.	5.1	49
17	Structural characterization of intermediate wheatgrass (Thinopyrum intermedium) starch. Cereal Chemistry, 2019, 96, 927-936.	1.1	6
18	Effect of sulfur fertilization rates on wheat (Triticum aestivum L.) functionality. Journal of Cereal Science, 2019, 87, 292-300.	1.8	12

#	Article	IF	Citations
19	Starch hydrolysis kinetics of intermediate wheatgrass (Thinopyrum intermedium) flour and its effects on the unit chain profile of its resistant starch fraction. Cereal Chemistry, 2019, 96, 564-574.	1.1	6
20	Effect of Radio Frequency Cold Plasma Treatment on Intermediate Wheatgrass (<i>Thinopyrum) Tj ETQq0 0 0 rgB</i>	T /Overloc 1.4	k 10 Tf 50 7 24
21	Chemical characterization, functionality, and baking quality of intermediate wheatgrass (Thinopyrum) Tj ${\sf ETQq1\ 1}$	0,784314 1.8	rgBT /Overl
22	Effect of pre-treatments on the antioxidant potential of phenolic extracts from barley malt rootlets. Food Chemistry, 2018, 266, 31-37.	4.2	24
23	Influence of diurnal photosynthetic activity on the morphology, structure, and thermal properties of normal and waxy barley starch. International Journal of Biological Macromolecules, 2017, 98, 188-200.	3.6	24
24	Effect of diurnal photosynthetic activity on the fine structure of amylopectin from normal and waxy barley starch. International Journal of Biological Macromolecules, 2017, 102, 924-932.	3.6	5
25	Why do millets have slower starch and protein digestibility than other cereals?. Trends in Food Science and Technology, 2017, 66, 73-83.	7.8	146
26	Evaluation of the international standardized 24-h dietary recall methodology (GloboDiet) for potential application in research and surveillance within African settings. Globalization and Health, 2017, 13, 35.	2.4	17
27	Fruit physical characteristics, proximate, mineral and starch characterization of FHIA 19 and FHIA 20 plantain and FHIA 03 cooking banana hybrids. SpringerPlus, 2016, 5, 796.	1.2	9
28	Mineral and phytate contents of some prepared popular Ghanaian foods. SpringerPlus, 2016, 5, 581.	1.2	5
29	Impact of full range of amylose contents on the architecture of starch granules*. International Journal of Biological Macromolecules, 2016, 89, 305-318.	3.6	19
30	Small differences in amylopectin fine structure may explain large functional differences of starch. Carbohydrate Polymers, 2016, 140, 113-121.	5.1	138
31	Effects of the amount and type of fatty acids present in millets on their inÂvitro starch digestibility and expected glycemic index (eGI). Journal of Cereal Science, 2015, 64, 76-81.	1.8	85
32	Physical and Molecular Characterization of Millet Starches. Cereal Chemistry, 2014, 91, 286-292.	1.1	68
33	Unit and Internal Chain Profile of Millet Amylopectin. Cereal Chemistry, 2014, 91, 29-34.	1.1	24
34	In Vitro Starch Digestibility and Expected Glycemic Index of Kodo Millet (<i>Paspalum) Tj ETQq0 0 0 rgBT /Overloc 211-217.</i>	k 10 Tf 50 1.1	147 Td (scr 82
35	RESPONSE SURFACE METHODOLOGY FOR STUDYING THE QUALITY CHARACTERISTICS OF COWPEA (<i>VIGNA)</i>	Γj <u>.</u> ΕΤQq1 1 	0.784314
36	Acidification and starch behaviour during co-fermentation of cassava (<i>Manihot) Tj ETQq0 0 0 rgBT /Overlock 10</i>	O Tf 50 67 1.3	Td (esculen 11

food. International Journal of Food Sciences and Nutrition, 2010, 61, 449-462.

#	Article	IF	CITATIONS
37	Biochemical changes in new plantain and cooking banana hybrids at various stages of ripening. Journal of the Science of Food and Agriculture, 2008, 88, 2724-2729.	1.7	13