
George Amponsah Annor

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/114621/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Why do millets have slower starch and protein digestibility than other cereals?. Trends in Food Science and Technology, 2017, 66, 73-83.	7.8	146
2	Small differences in amylopectin fine structure may explain large functional differences of starch. Carbohydrate Polymers, 2016, 140, 113-121.	5.1	138
3	Effects of the amount and type of fatty acids present in millets on their inÂvitro starch digestibility and expected glycemic index (eGI). Journal of Cereal Science, 2015, 64, 76-81.	1.8	85
4	In Vitro Starch Digestibility and Expected Glycemic Index of Kodo Millet (<i>Paspalum) Tj ETQq0 0 0 rgBT /Overlo 211-217.</i>	ock 10 Tf 5 1.1	50 627 Td (sc 82
5	Physical and Molecular Characterization of Millet Starches. Cereal Chemistry, 2014, 91, 286-292.	1.1	68
6	Potential of Cold Plasma Technology in Ensuring the Safety of Foods and Agricultural Produce: A Review. Foods, 2020, 9, 1435.	1.9	66
7	Modification of cereal and tuber waxy starches with radio frequency cold plasma and its effects on waxy starch properties. Carbohydrate Polymers, 2019, 223, 115075.	5.1	49
8	Cold plasma technologies: Their effect on starch properties and industrial scale-up for starch modification. Current Research in Food Science, 2022, 5, 451-463.	2.7	41
9	Impact of plasma reactive species on the structure and functionality of pea protein isolate. Food Chemistry, 2022, 371, 131135.	4.2	31
10	Unit and Internal Chain Profile of Millet Amylopectin. Cereal Chemistry, 2014, 91, 29-34.	1.1	24
11	Influence of diurnal photosynthetic activity on the morphology, structure, and thermal properties of normal and waxy barley starch. International Journal of Biological Macromolecules, 2017, 98, 188-200.	3.6	24
12	Effect of pre-treatments on the antioxidant potential of phenolic extracts from barley malt rootlets. Food Chemistry, 2018, 266, 31-37.	4.2	24
13	Effect of Radio Frequency Cold Plasma Treatment on Intermediate Wheatgrass (<i>Thinopyrum) Tj ETQq1 1 0.78</i>	84314 rgB 1.4	T /Overlock 24
14	Chemical characterization, functionality, and baking quality of intermediate wheatgrass (Thinopyrum) Tj ETQqO	0 0 rgBT /(Dverlock 107 22
15	Impact of full range of amylose contents on the architecture of starch granules*. International Journal of Biological Macromolecules, 2016, 89, 305-318.	3.6	19
16	Evaluation of the international standardized 24-h dietary recall methodology (GloboDiet) for potential application in research and surveillance within African settings. Globalization and Health, 2017, 13, 35.	2.4	17
17	Foodâ€Grade Maize Composition, Evaluation, and Genetics for Masaâ€Based Products. Crop Science, 2019, 59, 1392-1405.	0.8	15

18Biochemical changes in new plantain and cooking banana hybrids at various stages of ripening.
Journal of the Science of Food and Agriculture, 2008, 88, 2724-2729.1.713

#	Article	IF	CITATIONS
19	Effect of sulfur fertilization rates on wheat (Triticum aestivum L.) functionality. Journal of Cereal Science, 2019, 87, 292-300.	1.8	12
20	Acidification and starch behaviour during co-fermentation of cassava (<i>Manihot) Tj ETQq0 0 0 rgBT /Overlock 1 food. International Journal of Food Sciences and Nutrition, 2010, 61, 449-462.</i>	0 Tf 50 70 1.3)7 Td (escule 11
21	Multiscale characterization and micromechanical modeling of crop stem materials. Biomechanics and Modeling in Mechanobiology, 2021, 20, 69-91.	1.4	11
22	Variation in Lignin, Cell Wall-Bound <i>p</i> -Coumaric, and Ferulic Acid in the Nodes and Internodes of Cereals and Their Impact on Lodging. Journal of Agricultural and Food Chemistry, 2020, 68, 12569-12576.	2.4	10
23	Fruit physical characteristics, proximate, mineral and starch characterization of FHIA 19 and FHIA 20 plantain and FHIA 03 cooking banana hybrids. SpringerPlus, 2016, 5, 796.	1.2	9
24	Structural characterization and enzymatic hydrolysis of radio frequency cold plasma treated starches. Journal of Food Science, 2022, 87, 686-698.	1.5	9
25	RESPONSE SURFACE METHODOLOGY FOR STUDYING THE QUALITY CHARACTERISTICS OF COWPEA (<i>VIGNA)</i>	TjETQq1	1 8.784314
26	Optimizing the extrusion conditions for the production of expanded intermediate wheatgrass (<i>Thinopyrum intermedium</i>) products. Journal of Food Science, 2022, 87, 3496-3512.	1.5	8
27	Tempering Improves Flour Properties of Refined Intermediate Wheatgrass (Thinopyrum intermedium). Foods, 2019, 8, 337.	1.9	6
28	Structural characterization of intermediate wheatgrass (Thinopyrum intermedium) starch. Cereal Chemistry, 2019, 96, 927-936.	1.1	6
29	Starch hydrolysis kinetics of intermediate wheatgrass (Thinopyrum intermedium) flour and its effects on the unit chain profile of its resistant starch fraction. Cereal Chemistry, 2019, 96, 564-574.	1.1	6
30	Effect of Bran Pre-Treatment with Endoxylanase on the Characteristics of Intermediate Wheatgrass (Thinopyrum intermedium) Bread. Foods, 2021, 10, 1464.	1.9	6
31	Progress on breeding and food processing efforts to improve chemical composition and functionality of intermediate wheatgrass (<i>Thinopyrum intermedium</i>) for the food industry. Cereal Chemistry, 2022, 99, 235-252.	1.1	6
32	Mineral and phytate contents of some prepared popular Ghanaian foods. SpringerPlus, 2016, 5, 581.	1.2	5
33	Effect of diurnal photosynthetic activity on the fine structure of amylopectin from normal and waxy barley starch. International Journal of Biological Macromolecules, 2017, 102, 924-932.	3.6	5
34	Genetic characterization of flour quality and breadâ€making traits in a spring wheat nested association mapping population. Crop Science, 2021, 61, 1168-1183.	0.8	4
35	Predicting moisture content during maize nixtamalization using machine learning with NIR spectroscopy. Theoretical and Applied Genetics, 2021, 134, 3743-3757.	1.8	3
36	The effect of tempering on protein properties and arabinoxylan contents of intermediate wheatgrass (<i>Thinopyrum intermedium</i>) flour. Cereal Chemistry, 2022, 99, 144-156.	1.1	1

#	Article	IF	CITATIONS
37	Variability in changes of acrylamide precursors during nixtamalization for masa production. LWT - Food Science and Technology, 2022, 161, 113400.	2.5	0