Xiaozhe Qi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11461235/publications.pdf

Version: 2024-02-01

759233 794594 20 449 12 19 citations h-index g-index papers 20 20 20 600 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Human organic anion transporting polypeptide (OATP) 1B3 and mouse OATP1A/1B affect liver accumulation of Ochratoxin A in mice. Toxicology and Applied Pharmacology, 2020, 401, 115072.	2.8	8
2	The food safety of DP-356 \tilde{A}^{\sim} 43 soybeans on SD rats reflected by physiological variables and fecal microbiota during a 90-day feeding study. Regulatory Toxicology and Pharmacology, 2018, 97, 144-151.	2.7	0
3	Mitigation of cell apoptosis induced by ochratoxin A (OTA) is possibly through organic cation transport 2 (OCT2) knockout. Food and Chemical Toxicology, 2018, 121, 15-23.	3.6	10
4	Ochratoxin A transport by the human breast cancer resistance protein (BCRP), multidrug resistance protein 2 (MRP2), and organic anion-transporting polypeptides 1A2, 1B1 and 2B1. Toxicology and Applied Pharmacology, 2017, 329, 18-25.	2.8	13
5	Rice- or pork-based diets with similar calorie and content result in different rat gut microbiota. International Journal of Food Sciences and Nutrition, 2017, 68, 829-839.	2.8	4
6	Limited Link between Oxidative Stress and Ochratoxin A—Induced Renal Injury in an Acute Toxicity Rat Model. Toxins, 2016, 8, 373.	3.4	34
7	In Vivo Effects of Pichia Pastoris-Expressed Antimicrobial Peptide Hepcidin on the Community Composition and Metabolism Gut Microbiota of Rats. PLoS ONE, 2016, 11, e0164771.	2.5	7
8	Highâ€Throughput Tagâ€Sequencing Analysis of Early Events Induced by Ochratoxin A in HepGâ€2 Cells. Journal of Biochemical and Molecular Toxicology, 2016, 30, 29-36.	3.0	4
9	Lipid Rafts Disruption Increases Ochratoxin A Cytotoxicity to Hepatocytes. Journal of Biochemical and Molecular Toxicology, 2016, 30, 71-79.	3.0	13
10	Effects of neutrophils peptide-1 transgenic Chlorella ellipsoidea on the gut microbiota of male Sprague–Dawley rats, as revealed by high-throughput 16S rRNA sequencing. World Journal of Microbiology and Biotechnology, 2016, 32, 43.	3.6	5
11	<i>miR-122</i> plays an important role in ochratoxin A-induced hepatocyte apoptosis <i>in vitro</i> and <i>in vivo</i> . Toxicology Research, 2016, 5, 160-167.	2.1	20
12	Safety assessment of genetically modified rice expressing human serum albumin from urine metabonomics and fecal bacterial profile. Food and Chemical Toxicology, 2015, 76, 1-10.	3.6	12
13	Ochratoxin A induces rat renal carcinogenicity with limited induction of oxidative stress responses. Toxicology and Applied Pharmacology, 2014, 280, 543-549.	2.8	33
14	Discovery of systematic responses and potential biomarkers induced by ochratoxin A using metabolomics. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2014, 31, 1904-1913.	2.3	19
15	Combination of Metagenomics and Culture-Based Methods to Study the Interaction Between Ochratoxin A and Gut Microbiota. Toxicological Sciences, 2014, 141, 314-323.	3.1	80
16	Subchronic toxicity study in vivo and allergenicity study in vitro for genetically modified rice that expresses pharmaceutical protein (human serum albumin). Food and Chemical Toxicology, 2014, 72, 242-246.	3.6	18
17	MicroRNA profiling of rats with ochratoxin A nephrotoxicity. BMC Genomics, 2014, 15, 333.	2.8	52
18	Ochratoxin A induced early hepatotoxicity: new mechanistic insights from microRNA, mRNA and proteomic profiling studies. Scientific Reports, 2014, 4, .	3.3	54

XIAOZHE QI

#	Article	IF	CITATIONS
19	Effects of genetically modified T2A-1 rice on the GI health of rats after 90-day supplement. Scientific Reports, 2013, 3, 1962.	3.3	28
20	Subchronic feeding study of stacked trait genetically-modified soybean (3Ã⁻5423×40-3-2) in Sprague–Dawley rats. Food and Chemical Toxicology, 2012, 50, 3256-3263.	3.6	35