
Philippe Collas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11458333/publications.pdf Version: 2024-02-01

DHILIDDE COLLAS

#	Article	IF	CITATIONS
1	Cohesin facilitates zygotic genome activation in zebrafish. Development (Cambridge), 2018, 145, .	1.2	47
2	Distinct features of lamin A-interacting chromatin domains mapped by ChIP-sequencing from sonicated or micrococcal nuclease-digested chromatin. Nucleus, 2015, 6, 30-39.	0.6	71
3	Normalization of RNA-Sequencing Data from Samples with Varying mRNA Levels. PLoS ONE, 2014, 9, e89158.	1.1	44
4	A hyper-dynamic nature of bivalent promoter states underlies coordinated developmental gene expression modules. BMC Genomics, 2014, 15, 1186.	1.2	11
5	Transcriptome dynamics and diversity in the early zebrafish embryo. Briefings in Functional Genomics, 2014, 13, 95-105.	1.3	22
6	The specific alteration of histone methylation profiles by DZNep during early zebrafish development. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2014, 1839, 1307-1315.	0.9	18
7	Chromatin-linked determinants of zygotic genome activation. Cellular and Molecular Life Sciences, 2013, 70, 1425-1437.	2.4	28
8	Differential transcript isoform usage pre- and post-zygotic genome activation in zebrafish. BMC Genomics, 2013, 14, 331.	1.2	33
9	Genome-wide map of quantified epigenetic changes during in vitro chondrogenic differentiation of primary human mesenchymal stem cells. BMC Genomics, 2013, 14, 105.	1.2	69
10	DAXX-dependent supply of soluble (H3.3–H4) dimers to PML bodies pending deposition into chromatin. Genome Research, 2013, 23, 440-451.	2.4	61
11	Histone modifications and mRNA expression in the inner cell mass and trophectoderm of bovine blastocysts. Epigenetics, 2013, 8, 281-289.	1.3	32
12	Epigenetic Marking of the Zebrafish Developmental Program. Current Topics in Developmental Biology, 2013, 104, 85-112.	1.0	40
13	RNA Profiles of Porcine Embryos during Genome Activation Reveal Complex Metabolic Switch Sensitive to In Vitro Conditions. PLoS ONE, 2013, 8, e61547.	1.1	21
14	Developmental features of DNA methylation during activation of the embryonic zebrafish genome. Genome Biology, 2012, 13, R65.	13.9	60
15	Epigenetic complexity during the zebrafish mid-blastula transition. Biochemical and Biophysical Research Communications, 2012, 417, 1139-1144.	1.0	23
16	Prepatterning of Developmental Gene Expression by Modified Histones before Zygotic Genome Activation. Developmental Cell, 2011, 21, 993-1004.	3.1	188
17	Remodeling of ribosomal genes in somatic cells by Xenopus egg extract. Biochemical and Biophysical Research Communications, 2011, 412, 487-493.	1.0	11
18	Zebrafish mRNA sequencing deciphers novelties in transcriptome dynamics during maternal to zygotic transition. Genome Research, 2011, 21, 1328-1338.	2.4	247

#	Article	IF	CITATIONS
19	A Chromatin Immunoprecipitation Protocol for Small Cell Numbers. Methods in Molecular Biology, 2011, 791, 179-193.	0.4	9
20	The Current State of Chromatin Immunoprecipitation. Molecular Biotechnology, 2010, 45, 87-100.	1.3	224
21	Differentiation of human adiposeâ€derived stem cells into beating cardiomyocytes. Journal of Cellular and Molecular Medicine, 2010, 14, 878-889.	1.6	168
22	Tiling Histone H3 Lysine 4 and 27 Methylation in Zebrafish Using High-Density Microarrays. PLoS ONE, 2010, 5, e15651.	1.1	27
23	Chromatin states of developmentally-regulated genes revealed by DNA and histone methylation patterns in zebrafish embryos. International Journal of Developmental Biology, 2010, 54, 803-813.	0.3	85
24	Histone H3 Lysine 27 Methylation Asymmetry on Developmentally-Regulated Promoters Distinguish the First Two Lineages in Mouse Preimplantation Embryos. PLoS ONE, 2010, 5, e9150.	1.1	91
25	Mutually exclusive binding of PP1 and RNA to AKAP149 affects the mitochondrial network. Human Molecular Genetics, 2009, 18, 978-987.	1.4	22
26	μChIP: Chromatin Immunoprecipitation for Small Cell Numbers. Methods in Molecular Biology, 2009, 567, 59-74.	0.4	27
27	Immunoprecipitation of Methylated DNA. Methods in Molecular Biology, 2009, 567, 249-262.	0.4	27
28	Proteomics Analysis of Epithelial Cells Reprogrammed in Cell-free Extract. Molecular and Cellular Proteomics, 2009, 8, 1401-1412.	2.5	7
29	Histone H3 Modifications Associated With Differentiation and Long-Term Culture of Mesenchymal Adipose Stem Cells. Stem Cells and Development, 2009, 18, 725-736.	1.1	91
30	Epigenetic states in stem cells. Biochimica Et Biophysica Acta - General Subjects, 2009, 1790, 900-905.	1.1	33
31	Fish'n ChIPs: Chromatin Immunoprecipitation in the Zebrafish Embryo. Methods in Molecular Biology, 2009, 567, 75-86.	0.4	61
32	The State-of-the-Art of Chromatin Immunoprecipitation. Methods in Molecular Biology, 2009, 567, 1-25.	0.4	32
33	Fast genomic μChIP-chip from 1,000 cells. Genome Biology, 2009, 10, R13.	13.9	35
34	A rapid micro chromatin immunoprecipitation assay (ChIP). Nature Protocols, 2008, 3, 1032-1045.	5.5	259
35	Highâ€resolution analysis of genetic stability of human adipose tissue stem cells cultured to senescence. Journal of Cellular and Molecular Medicine, 2008, 12, 553-563.	1.6	148
36	μChIP—a rapid micro chromatin immunoprecipitation assay for small cell samples and biopsies. Nucleic Acids Research, 2008, 36, e15.	6.5	78

#	Article	IF	CITATIONS
37	Chop it, ChIP it, check it: the current status of chromatin immunoprecipitation. Frontiers in Bioscience - Landmark, 2008, 13, 929.	3.0	91
38	Novel Approaches to Epigenetic Reprogramming of Somatic Cells. Cloning and Stem Cells, 2007, 9, 26-32.	2.6	17
39	Epigenetic Reprogramming of OCT4 and NANOG Regulatory Regions by Embryonal Carcinoma Cell Extract. Molecular Biology of the Cell, 2007, 18, 1543-1553.	0.9	188
40	Q2ChIP, a Quick and Quantitative Chromatin Immunoprecipitation Assay, Unravels Epigenetic Dynamics of Developmentally Regulated Genes in Human Carcinoma Cells. Stem Cells, 2007, 25, 1037-1046.	1.4	137
41	Dynamics of adipogenic promoter DNA methylation during clonal culture of human adipose stem cells to senescence. BMC Cell Biology, 2007, 8, 18.	3.0	99
42	CpG Methylation Profiles of Endothelial Cell-Specific Gene Promoter Regions in Adipose Tissue Stem Cells Suggest Limited Differentiation Potential Toward the Endothelial Cell Lineage. Stem Cells, 2007, 25, 852-861.	1.4	60
43	Modulation of Cell Fate Using Nuclear and Cytoplasmic Extracts. , 2006, 325, 99-114.		16
44	On the way to reprogramming cells to pluripotency using cell-free extracts. Reproductive BioMedicine Online, 2006, 12, 762-770.	1.1	19
45	Association of PP1 with Its Regulatory Subunit AKAP149 Is Regulated by Serine Phosphorylation Flanking the RVXF Motif of AKAP149. Biochemistry, 2006, 45, 5868-5877.	1.2	24
46	The KH-Tudor Domain of A-Kinase Anchoring Protein 149 Mediates RNA-Dependent Self-Association. Biochemistry, 2006, 45, 14980-14989.	1.2	20
47	Epigenetic reprogramming of nuclei using cell extracts. Stem Cell Reviews and Reports, 2006, 2, 309-317.	5.6	37
48	Stable CpG Hypomethylation of Adipogenic Promoters in Freshly Isolated, Cultured, and Differentiated Mesenchymal Stem Cells from Adipose Tissue. Molecular Biology of the Cell, 2006, 17, 3543-3556.	0.9	132
49	In Vitro Reprogramming of Nuclei and Cells. Methods in Molecular Biology, 2006, 348, 259-267.	0.4	4
50	Cell Extract-Derived Differentiation of Embryonic Stem Cells. Stem Cells, 2005, 23, 712-718.	1.4	87
51	Isolation and Transcription Profiling of Purified Uncultured Human Stromal Stem Cells: Alteration of Gene Expression after In Vitro Cell Culture. Molecular Biology of the Cell, 2005, 16, 1131-1141.	0.9	317
52	Long-term in vitro, cell-type-specific genome-wide reprogramming of gene expression. Experimental Cell Research, 2005, 309, 32-47.	1.2	34
53	Induction of Dedifferentiation, Genomewide Transcriptional Programming, and Epigenetic Reprogramming by Extracts of Carcinoma and Embryonic Stem Cells. Molecular Biology of the Cell, 2005, 16, 5719-5735.	0.9	258
54	Transdifferentiation. , 2004, , 147-151.		1

#	Article	IF	CITATIONS
55	Cloned Calves from Chromatin Remodeled In Vitro1. Biology of Reproduction, 2004, 70, 146-153.	1.2	72
56	Differentiation of human adipose tissue stem cells using extracts of rat cardiomyocytes. Biochemical and Biophysical Research Communications, 2004, 314, 420-427.	1.0	222
57	Transient alteration of cell fate using a nuclear and cytoplasmic extract of an insulinoma cell line. Biochemical and Biophysical Research Communications, 2004, 316, 834-841.	1.0	65
58	Teaching cells new tricks. Trends in Biotechnology, 2003, 21, 354-361.	4.9	50
59	Nuclear reprogramming in cell–free extracts. Philosophical Transactions of the Royal Society B: Biological Sciences, 2003, 358, 1389-1395.	1.8	34
60	AKAP149 is a novel PP1 specifier required to maintain nuclear envelope integrity in G1 phase. Journal of Cell Science, 2003, 116, 2237-2246.	1.2	56
61	HA95 and LAP2β mediate a novel chromatin–nuclear envelope interaction implicated in initiation of DNA replication. Journal of Cell Biology, 2003, 160, 177-188.	2.3	63
62	Architectural defects in pronuclei of mouse nuclear transplant embryos. Journal of Cell Science, 2003, 116, 3713-3720.	1.2	41
63	Reprogramming Somatic Cells for Therapeutic Applications. , 2003, 4, 7-13.		2
64	Novel Approaches to Transdifferentiation. Cloning and Stem Cells, 2002, 4, 379-387.	2.6	29
65	Induction of Oct-3/4 expression in somatic cells by gap junction-mediated cAMP signaling from blastomeres. European Journal of Cell Biology, 2002, 81, 585-591.	1.6	25
66	Reprogramming fibroblasts to express T-cell functions using cell extracts. Nature Biotechnology, 2002, 20, 460-466.	9.4	236
67	Reprogrammed gene expression in a somatic cellâ€free extract. EMBO Reports, 2002, 3, 384-389.	2.0	78
68	Differential regulation of maternal and paternal chromosome condensation in mitotic zygotes. Journal of Cell Science, 2002, 115, 2931-2940.	1.2	31
69	Activation of Mammalian Oocytes. , 2002, , 21-45.		2
70	Phosphodiesterase 4D and Protein Kinase A Type II Constitute a Signaling Unit in the Centrosomal Area. Journal of Biological Chemistry, 2001, 276, 21999-22002.	1.6	215
71	Mistargeting of B-Type Lamins at the End of Mitosis. Journal of Cell Biology, 2001, 153, 621-626.	2.3	91
72	Sorting nuclear membrane proteins at mitosis. Trends in Cell Biology, 2000, 10, 5-8.	3.6	66

#	Article	IF	CITATIONS
73	Recruitment of Protein Phosphatase 1 to the Nuclear Envelope by a-Kinase Anchoring Protein Akap149 Is a Prerequisite for Nuclear Lamina Assembly. Journal of Cell Biology, 2000, 150, 1251-1262.	2.3	155
74	A Kinase–Anchoring Protein (Akap95) Recruits Human Chromosome-Associated Protein (Hcap-D2/Eg7) for Chromosome Condensation in Mitotic Extract. Journal of Cell Biology, 2000, 149, 531-536.	2.3	71
75	Localization of a Novel Human A-Kinase-Anchoring Protein, hAKAP220, during Spermatogenesis. Developmental Biology, 2000, 223, 194-204.	0.9	98
76	The a-Kinase–Anchoring Protein Akap95 Is a Multivalent Protein with a Key Role in Chromatin Condensation at Mitosis. Journal of Cell Biology, 1999, 147, 1167-1180.	2.3	123
77	Remodeling the sperm nucleus into a male pronucleus at fertilization. Theriogenology, 1998, 49, 67-81.	0.9	44
78	Inactivation of histone H1 kinase by Ca2+ in rabbit oocytes. Molecular Reproduction and Development, 1995, 40, 253-258.	1.0	66
79	Nuclear transplantation by microinjection of inner cell mass and granulosa cell nuclei. Molecular Reproduction and Development, 1994, 38, 264-267.	1.0	99
80	Cloning Rabbit Embryos by Nuclear Transplantation. , 1994, , 99-105.		1
81	Chromatin and microtubule organization in the first cell cycle in rabbit parthenotes and nuclear transplant embryos. Molecular Reproduction and Development, 1993, 34, 33-42.	1.0	29
82	Electrically induced calcium elevation, activation, and parthenogenetic development of bovine oocytes. Molecular Reproduction and Development, 1993, 34, 212-223.	1.0	116
83	Histone H1 kinase activity in bovine oocytes following calcium stimulation. Molecular Reproduction and Development, 1993, 34, 224-231.	1.0	128
84	Influence of Cell Cycle Stage of the Donor Nucleus on Development of Nuclear Transplant Rabbit Embryos1. Biology of Reproduction, 1992, 46, 492-500.	1.2	139
85	Electrically Induced Fusion and Activation in Nuclear Transplant Embryos. , 1992, , 535-551.		4
86	Electrically Induced Fusion and Activation in Nuclear Transplant Embryos. , 1992, , 535-551.		3
87	Relationship between Nuclear Remodeling and Development in Nuclear Transplant Rabbit Embryos1. Biology of Reproduction, 1991, 45, 455-465.	1.2	150
88	Factors Affecting the Efficiency of Nuclear Transplantation in the Rabbit Embryo1. Biology of Reproduction, 1990, 43, 877-884.	1.2	148