
Max Lafontan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11456758/publications.pdf Version: 2024-02-01

MAYLAFONTAN

#	Article	IF	CITATIONS
1	Interrelationship between lymphocytes and leptin in fat depots of obese mice revealed by changes in nutritional status. Journal of Physiology and Biochemistry, 2015, 71, 497-507.	3.0	6
2	Differences Between Subcutaneous and Visceral Adipose Tissues. , 2013, , 329-349.		4
3	Natriuretic peptides and cGMP signaling control of energy homeostasis. American Journal of Physiology - Heart and Circulatory Physiology, 2013, 304, H358-H368.	3.2	105
4	Historical perspectives in fat cell biology: the fat cell as a model for the investigation of hormonal and metabolic pathways. American Journal of Physiology - Cell Physiology, 2012, 302, C327-C359.	4.6	77
5	Les cellules endothéliales du tissu adipeux. Cahiers De Nutrition Et De Dietetique, 2011, 46, 234-239.	0.3	Ο
6	Impact of a Mechanical Massage on Gene Expression Profile and Lipid Mobilization in Female Gluteofemoral Adipose Tissue. Obesity Facts, 2011, 4, 121-129.	3.4	22
7	Cellular Remodeling during the Growth of the Adipose Tissue. , 2011, , 183-190.		1
8	Lipid mobilization in subcutaneous adipose tissue during exercise in lean and obese humans. Roles of insulin and natriuretic peptides. American Journal of Physiology - Endocrinology and Metabolism, 2010, 299, E258-E265.	3.5	26
9	Adipose Tissue Endothelial Cells From Obese Human Subjects: Differences Among Depots in Angiogenic, Metabolic, and Inflammatory Gene Expression and Cellular Senescence. Diabetes, 2010, 59, 2755-2763.	0.6	232
10	Interplay Between Human Adipocytes and T Lymphocytes in Obesity. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 1608-1614.	2.4	205
11	Unexpected trafficking of immune cells within the adipose tissue during the onset of obesity. Biochemical and Biophysical Research Communications, 2009, 384, 482-485.	2.1	245
12	Lipolysis and lipid mobilization in human adipose tissue. Progress in Lipid Research, 2009, 48, 275-297.	11.6	630
13	Control of lipolysis by natriuretic peptides and cyclic GMP. Trends in Endocrinology and Metabolism, 2008, 19, 130-137.	7.1	203
14	Exercise-induced lipid mobilization in subcutaneous adipose tissue is mainly related to natriuretic peptides in overweight men. American Journal of Physiology - Endocrinology and Metabolism, 2008, 295, E505-E513.	3.5	50
15	Atrial Natriuretic Peptide Induces Postprandial Lipid Oxidation in Humans. Diabetes, 2008, 57, 3199-3204.	0.6	125
16	Atrial natriuretic peptide contribution to lipid mobilization and utilization during head-down bed rest in humans. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2007, 293, R612-R617.	1.8	17
17	Sex Differences in Lipolysis-Regulating Mechanisms in Overweight Subjects: Effect of Exercise Intensity*. Obesity, 2007, 15, 2245-2255.	3.0	33
18	Tissu adipeux : glande endocrine polyvalente. Cahiers De Nutrition Et De Dietetique, 2007, 42, 79-83.	0.3	0

Max Lafontan

#	Article	IF	CITATIONS
19	β-Adrenergic and Atrial Natriuretic Peptide Interactions on Human Cardiovascular and Metabolic Regulation. Journal of Clinical Endocrinology and Metabolism, 2006, 91, 5069-5075.	3.6	50
20	Atrial natriuretic peptide stimulates lipid mobilization during repeated bouts of endurance exercise. American Journal of Physiology - Endocrinology and Metabolism, 2006, 290, E864-E869.	3.5	54
21	cAMP- and cGMP-dependent control of lipolysis and lipid mobilization in humans: putative targets for fat cell management. , 2006, , 53-77.		2
22	Lipid Mobilization with Physiological Atrial Natriuretic Peptide Concentrations in Humans. Journal of Clinical Endocrinology and Metabolism, 2005, 90, 3622-3628.	3.6	152
23	An Unsuspected Metabolic Role for Atrial Natriuretic Peptides. Arteriosclerosis, Thrombosis, and Vascular Biology, 2005, 25, 2032-2042.	2.4	102
24	Training Enhances ANP Lipid-Mobilizing Action in Adipose Tissue of Overweight Men. Medicine and Science in Sports and Exercise, 2005, 37, 1126-1132.	0.4	51
25	FAT CELLS: Afferent and Efferent Messages Define New Approaches to Treat Obesity. Annual Review of Pharmacology and Toxicology, 2005, 45, 119-146.	9.4	145
26	Differential regulation of atrial natriuretic peptide– and adrenergic receptor–dependent lipolytic pathways in human adipose tissue. Metabolism: Clinical and Experimental, 2005, 54, 122-131.	3.4	44
27	Atrial natriuretic peptide contributes to the physiological control of lipid mobilization in humans. FASEB Journal, 2004, 18, 908-910.	0.5	157
28	Functional and Pharmacological Characterization of the Natriuretic Peptide-Dependent Lipolytic Pathway in Human Fat Cells. Journal of Pharmacology and Experimental Therapeutics, 2004, 308, 984-992.	2.5	72
29	Do regional differences in adipocyte biology provide new pathophysiological insights?. Trends in Pharmacological Sciences, 2003, 24, 276-283.	8.7	252
30	Involvement of a cGMP-dependent Pathway in the Natriuretic Peptide-mediated Hormone-sensitive Lipase Phosphorylation in Human Adipocytes. Journal of Biological Chemistry, 2003, 278, 48617-48626.	3.4	221
31	Natriuretic peptide-dependent lipolysis in fat cells is a primate specificity. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2002, 283, R257-R265.	1.8	139
32	Secretion of a lysophospholipase D activity by adipocytes: involvement in lysophosphatidic acid synthesis. Journal of Lipid Research, 2002, 43, 904-910.	4.2	62
33	The lipid-mobilizing effect of atrial natriuretic peptide is unrelated to sympathetic nervous system activation or obesity in young men. Journal of Lipid Research, 2001, 42, 536-544.	4.2	89
34	Natriuretic peptides: a new lipolytic pathway in human adipocytes. FASEB Journal, 2000, 14, 1345-1351.	0.5	404
35	Activation of α ₂ -adrenergic receptors impairs exercise-induced lipolysis in SCAT of obese subjects. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2000, 279, R499-R504.	1.8	68
36	Characterization of NPY receptors controlling lipolysis and leptin secretion in human adipocytes. FEBS Letters, 2000, 475, 150-156.	2.8	64

Max Lafontan

#	Article	IF	CITATIONS
37	Leptin induces oxidative stress in human endothelial cells. FASEB Journal, 1999, 13, 1231-1238.	0.5	611
38	Leptin, the Product of Ob Gene, Promotes Angiogenesis. Circulation Research, 1998, 83, 1059-1066.	4.5	650
39	Fat Cell α2-Adrenoceptors: The Regulation of Fat CellFunction and Lipolysis*. Endocrine Reviews, 1995, 16, 716-738.	20.1	130
40	Pharmacological prospects for $\hat{l}\pm 2$ -adrenoceptor antagonist therapy. Trends in Pharmacological Sciences, 1992, 13, 277-282.	8.7	85
41	Evidence for the α2 nature of the α-adrenergic receptor inhibiting lipolysis in human fat cells. European Journal of Pharmacology, 1980, 66, 87-93.	3.5	78
42	Adipose Tissue: Development, Anatomy and Functions. , 0, , 79-108.		4