
## Robert V Shannon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11455014/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Benefits of Cochlear Implantation for Single-Sided Deafness: Data From the House Clinic-University of<br>Southern California-University of California, Los Angeles Clinical Trial. Ear and Hearing, 2019, 40,<br>766-781. | 2.1 | 86        |
| 2  | Initial Results of a Safety and Feasibility Study of Auditory Brainstem Implantation in Congenitally<br>Deaf Children. Otology and Neurotology, 2017, 38, 212-220.                                                        | 1.3 | 28        |
| 3  | Is Birdsong More Like Speech or Music?. Trends in Cognitive Sciences, 2016, 20, 245-247.                                                                                                                                  | 7.8 | 12        |
| 4  | Two Laskers and Counting: Learning From the Past Enables Future Innovations With Central Neural Prostheses. Brain Stimulation, 2015, 8, 439-441.                                                                          | 1.6 | 3         |
| 5  | Regulatory and Funding Strategies to Develop a Safety Study of an Auditory Brainstem Implant in<br>Young Children Who Are Deaf. Therapeutic Innovation and Regulatory Science, 2015, 49, 659-665.                         | 1.6 | 3         |
| 6  | Auditory Implant Research at the House Ear Institute 1989–2013. Hearing Research, 2015, 322, 57-66.                                                                                                                       | 2.0 | 22        |
| 7  | Training improves cochlear implant rate discrimination on a psychophysical task. Journal of the<br>Acoustical Society of America, 2014, 135, 334-341.                                                                     | 1.1 | 30        |
| 8  | The Development of Auditory Perception in Children after Auditory Brainstem Implantation. Audiology and Neuro-Otology, 2014, 19, 386-394.                                                                                 | 1.3 | 55        |
| 9  | Improving speech perception in noise with current focusing in cochlear implant users. Hearing Research, 2013, 299, 29-36.                                                                                                 | 2.0 | 97        |
| 10 | The Future Present. ASHA Leader, 2013, 18, 36-47.                                                                                                                                                                         | 0.1 | 0         |
| 11 | Advances in auditory prostheses. Current Opinion in Neurology, 2012, 25, 61-66.                                                                                                                                           | 3.6 | 64        |
| 12 | Improving virtual channel discrimination in a multi-channel context. Hearing Research, 2012, 286, 19-29.                                                                                                                  | 2.0 | 26        |
| 13 | Histopathological analysis of a 15â€year user of an auditory brainstem implant. Laryngoscope, 2012, 122,<br>645-648.                                                                                                      | 2.0 | 8         |
| 14 | Prosthetic Hearing: Implications for Pattern Recognition in Speech. , 2012, , 289-301.                                                                                                                                    |     | 0         |
| 15 | Infants versus older children fitted with cochlear implants: Performance over 10 years. International<br>Journal of Pediatric Otorhinolaryngology, 2011, 75, 504-509.                                                     | 1.0 | 112       |
| 16 | Estimated net saving to society from cochlear implantation in infants: A preliminary analysis.<br>Laryngoscope, 2011, 121, 2455-2460.                                                                                     | 2.0 | 23        |
| 17 | Effect of Stimulation Rate on Cochlear Implant Users' Phoneme, Word and Sentence Recognition in Quiet and in Noise. Audiology and Neuro-Otology, 2011, 16, 113-123.                                                       | 1.3 | 72        |
| 18 | Auditory Brainstem Implants. ASHA Leader, 2011, 16, 17-19.                                                                                                                                                                | 0.1 | 2         |

| #  | Article                                                                                                                                                                                                  | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Complications in Auditory Brainstem Implant Surgery in Adults and Children. Otology and Neurotology, 2010, 31, 558-564.                                                                                  | 1.3  | 65        |
| 20 | Auditory prostheses for the brainstem and midbrain. , 2010, , .                                                                                                                                          |      | 1         |
| 21 | Current focusing sharpens local peaks of excitation in cochlear implant stimulation. Hearing<br>Research, 2010, 270, 89-100.                                                                             | 2.0  | 63        |
| 22 | Beyond cochlear implants: awakening the deafened brain. Nature Neuroscience, 2009, 12, 686-691.                                                                                                          | 14.8 | 208       |
| 23 | Melodic Contour Identification and Music Perception by Cochlear Implant Users. Annals of the New<br>York Academy of Sciences, 2009, 1169, 518-533.                                                       | 3.8  | 83        |
| 24 | Progress in restoration of hearing with the auditory brainstem implant. Progress in Brain Research, 2009, 175, 333-345.                                                                                  | 1.4  | 45        |
| 25 | Auditory Brainstem Implants. Neurotherapeutics, 2008, 5, 128-136.                                                                                                                                        | 4.4  | 121       |
| 26 | Cochlear and Brainstem Auditory Prostheses "Neural Interface for Hearing Restoration: Cochlear and<br>Brain Stem Implants― Proceedings of the IEEE, 2008, 96, 1085-1095.                                 | 21.3 | 26        |
| 27 | Audiologic Outcomes With the Penetrating Electrode Auditory Brainstem Implant. Otology and Neurotology, 2008, 29, 1147-1154.                                                                             | 1.3  | 80        |
| 28 | 14-3-3. , 2008, , 1-1.                                                                                                                                                                                   |      | 2         |
| 29 | Understanding hearing through deafness. Proceedings of the National Academy of Sciences of the<br>United States of America, 2007, 104, 6883-6884.                                                        | 7.1  | 13        |
| 30 | Combined Effects of Frequency Compression-Expansion and Shift on Speech Recognition. Ear and Hearing, 2007, 28, 277-289.                                                                                 | 2.1  | 39        |
| 31 | Effects of electrode design and configuration on channel interactions. Hearing Research, 2006, 211, 33-45.                                                                                               | 2.0  | 78        |
| 32 | Effects of Stimulation Mode, Level and Location on Forward-Masked Excitation Patterns in Cochlear<br>Implant Patients. JARO - Journal of the Association for Research in Otolaryngology, 2006, 7, 15-25. | 1.8  | 51        |
| 33 | Frequency transposition around dead regions simulated with a noiseband vocoder. Journal of the Acoustical Society of America, 2006, 119, 1156.                                                           | 1.1  | 33        |
| 34 | Interactions between cochlear implant electrode insertion depth and frequency-place mapping.<br>Journal of the Acoustical Society of America, 2005, 117, 1405-1416.                                      | 1.1  | 107       |
| 35 | Open Set Speech Perception with Auditory Brainstem Implant?. Laryngoscope, 2005, 115, 1974-1978.                                                                                                         | 2.0  | 163       |
| 36 | Speech and Music Have Different Requirements for Spectral Resolution. International Review of Neurobiology, 2005, 70, 121-134.                                                                           | 2.0  | 30        |

| #  | Article                                                                                                                                                                                                 | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Effects of Stimulation Rate on Speech Recognition with Cochlear Implants. Audiology and Neuro-Otology, 2005, 10, 169-184.                                                                               | 1.3 | 67        |
| 38 | The multichannel auditory brainstem implant: how many electrodes make sense?. Journal of Neurosurgery, 2004, 100, 16-23.                                                                                | 1.6 | 37        |
| 39 | Frequency-place compression and expansion in cochlear implant listeners. Journal of the Acoustical<br>Society of America, 2004, 116, 3130-3140.                                                         | 1.1 | 61        |
| 40 | Speech Perception with Cochlear Implants. Springer Handbook of Auditory Research, 2004, , 334-376.                                                                                                      | 0.7 | 32        |
| 41 | The number of spectral channels required for speech recognition depends on the difficulty of the listening situation. Acta Oto-Laryngologica, 2004, 124, 50-54.                                         | 0.9 | 218       |
| 42 | Brainstem auditory implants. Operative Techniques in Otolaryngology - Head and Neck Surgery, 2003,<br>14, 282-287.                                                                                      | 0.4 | 1         |
| 43 | Speech recognition under conditions of frequency-place compression and expansion. Journal of the Acoustical Society of America, 2003, 113, 2064-2076.                                                   | 1.1 | 92        |
| 44 | Use of a Multichannel Auditory Brainstem Implant for Neurofibromatosis Type 2. Stereotactic and<br>Functional Neurosurgery, 2003, 81, 110-114.                                                          | 1.5 | 50        |
| 45 | Perceptual learning following changes in the frequency-to-electrode assignment with the Nucleus-22 cochlear implant. Journal of the Acoustical Society of America, 2002, 112, 1664-1674.                | 1.1 | 137       |
| 46 | Multichannel auditory brainstem implant: update on performance in 61 patients. Journal of<br>Neurosurgery, 2002, 96, 1063-1071.                                                                         | 1.6 | 214       |
| 47 | The Relative Importance of Amplitude, Temporal, and Spectral Cues for Cochlear Implant Processor<br>Design. American Journal of Audiology, 2002, 11, 124-127.                                           | 1.2 | 42        |
| 48 | Frequency Mapping in Cochlear Implants. Ear and Hearing, 2002, 23, 339-348.                                                                                                                             | 2.1 | 35        |
| 49 | Holes in Hearing. JARO - Journal of the Association for Research in Otolaryngology, 2002, 3, 185-199.                                                                                                   | 1.8 | 76        |
| 50 | Brainstem electronic implants for bilateral anacusis following surgical removal of cerebello pontine<br>angle lesions. Otolaryngologic Clinics of North America, 2001, 34, 485-499.                     | 1.1 | 9         |
| 51 | Speech recognition in noise as a function of the number of spectral channels: Comparison of acoustic hearing and cochlear implants. Journal of the Acoustical Society of America, 2001, 110, 1150-1163. | 1.1 | 888       |
| 52 | Effects of Dynamic Range and Amplitude Mapping on Phoneme Recognition in Nucleus-22 Cochlear<br>Implant Users. Ear and Hearing, 2000, 21, 227-235.                                                      | 2.1 | 34        |
| 53 | Effects of phase duration and electrode separation on loudness growth in cochlear implant listeners. Journal of the Acoustical Society of America, 2000, 107, 1637-1644.                                | 1.1 | 50        |
| 54 | Speech recognition with reduced spectral cues as a function of age. Journal of the Acoustical Society of America, 2000, 107, 2704-2710.                                                                 | 1.1 | 246       |

| #  | Article                                                                                                                                                                                      | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Effect of stimulation rate on phoneme recognition by Nucleus-22 cochlear implant listeners. Journal of the Acoustical Society of America, 2000, 107, 589-597.                                | 1.1 | 107       |
| 56 | Consonant recordings for speech testing. Journal of the Acoustical Society of America, 1999, 106,<br>L71-L74.                                                                                | 1.1 | 139       |
| 57 | Effect of acoustic dynamic range on phoneme recognition in quiet and noise by cochlear implant<br>users. Journal of the Acoustical Society of America, 1999, 106, L65-L70.                   | 1.1 | 26        |
| 58 | Phoneme recognition by cochlear implant users as a function of signal-to-noise ratio and nonlinear amplitude mapping. Journal of the Acoustical Society of America, 1999, 106, L18-L23.      | 1.1 | 24        |
| 59 | Recognition of spectrally degraded and frequency-shifted vowels in acoustic and electric hearing.<br>Journal of the Acoustical Society of America, 1999, 105, 1889-1900.                     | 1.1 | 160       |
| 60 | Effects of Electrode Location and Spacing on Phoneme Recognition with the Nucleus-22 Cochlear<br>Implant. Ear and Hearing, 1999, 20, 321-331.                                                | 2.1 | 50        |
| 61 | Effects of Electrode Configuration and Frequency Allocation on Vowel Recognition with the Nucleus-22 Cochlear Implant. Ear and Hearing, 1999, 20, 332-344.                                   | 2.1 | 76        |
| 62 | Psychophysical laws revealed by electric hearing. NeuroReport, 1999, 10, 1931-1935.                                                                                                          | 1.2 | 32        |
| 63 | Design for an Inexpensive but Effective Cochlear Implant. Otolaryngology - Head and Neck Surgery,<br>1998, 118, 235-241.                                                                     | 1.9 | 12        |
| 64 | Speech recognition with altered spectral distribution of envelope cues. Journal of the Acoustical<br>Society of America, 1998, 104, 2467-2476.                                               | 1.1 | 181       |
| 65 | Gap detection as a measure of electrode interaction in cochlear implants. Journal of the Acoustical<br>Society of America, 1998, 104, 2372-2384.                                             | 1.1 | 59        |
| 66 | Within-channel gap detection using dissimilar markers in cochlear implant listeners. Journal of the<br>Acoustical Society of America, 1998, 103, 2515-2519.                                  | 1.1 | 31        |
| 67 | Importance of tonal envelope cues in Chinese speech recognition. Journal of the Acoustical Society of America, 1998, 104, 505-510.                                                           | 1.1 | 233       |
| 68 | Effects of amplitude nonlinearity on phoneme recognition by cochlear implant users and normal-hearing listeners. Journal of the Acoustical Society of America, 1998, 104, 2570-2577.         | 1.1 | 80        |
| 69 | Forward masked excitation patterns in multielectrode electrical stimulation. Journal of the Acoustical Society of America, 1998, 103, 2565-2572.                                             | 1.1 | 153       |
| 70 | Effects of noise and spectral resolution on vowel and consonant recognition: Acoustic and electric hearing. Journal of the Acoustical Society of America, 1998, 104, 3586-3596.              | 1.1 | 306       |
| 71 | Speech Recognition as a Function of the Number of Electrodes Used in the SPEAK Cochlear Implant<br>Speech Processor. Journal of Speech, Language, and Hearing Research, 1997, 40, 1201-1215. | 1.6 | 338       |
| 72 | Multi-unit mapping of acoustic stimuli in gerbil inferior colliculus. Hearing Research, 1997, 108,<br>145-156.                                                                               | 2.0 | 16        |

| #  | Article                                                                                                                                                                                                      | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Place pitch discrimination and speech recognition in cochlear implants users. South African journal<br>of communication disorders Die Suid-Afrikaanse tydskrif vir Kommunikasieafwykings, The, 1996, 43, 27. | 0.6  | 6         |
| 74 | Speech recognition with altered spectral distribution of envelope cues. Journal of the Acoustical Society of America, 1996, 100, 2692-2692.                                                                  | 1.1  | 98        |
| 75 | Electrode interactions measured by loudness summation in cochlear implant listeners. Journal of the Acoustical Society of America, 1996, 100, 2631-2631.                                                     | 1.1  | 2         |
| 76 | Speech Recognition with Primarily Temporal Cues. Science, 1995, 270, 303-304.                                                                                                                                | 12.6 | 2,687     |
| 77 | Possible origins of the non-monotonic intensity discrimination function in forward masking. Hearing Research, 1995, 82, 216-224.                                                                             | 2.0  | 23        |
| 78 | Auditory Brainstem Implant: I. Issues in Surgical Implantation. Otolaryngology - Head and Neck<br>Surgery, 1993, 108, 624-633.                                                                               | 1.9  | 193       |
| 79 | Auditory Brainstem Implant: II. Postsurgical Issues and Performance. Otolaryngology - Head and Neck<br>Surgery, 1993, 108, 634-642.                                                                          | 1.9  | 145       |
| 80 | Chapter 24 Quantitative comparison of electrically and acoustically evoked auditory perception:<br>implications for the location of perceptual mechanisms. Progress in Brain Research, 1993, 97, 261-269.    | 1.4  | 20        |
| 81 | Temporal modulation transfer functions in patients with cochlear implants. Journal of the<br>Acoustical Society of America, 1992, 91, 2156-2164.                                                             | 1.1  | 197       |
| 82 | Loudness balance between electric and acoustic stimulation. Hearing Research, 1992, 60, 231-235.                                                                                                             | 2.0  | 86        |
| 83 | A computer interface for psychophysical and speech research with the Nucleus cochlear implant.<br>Journal of the Acoustical Society of America, 1990, 87, 905-907.                                           | 1.1  | 80        |
| 84 | Forward masking in patients with cochlear implants. Journal of the Acoustical Society of America, 1990, 88, 741-744.                                                                                         | 1.1  | 75        |
| 85 | Psychophysical measures from electrical stimulation of the human cochlear nucleus. Hearing Research, 1990, 47, 159-168.                                                                                      | 2.0  | 72        |
| 86 | Detection of gaps in sinusoids and pulse trains by patients with cochlear implants. Journal of the<br>Acoustical Society of America, 1989, 85, 2587-2592.                                                    | 1.1  | 90        |
| 87 | Threshold functions for electrical stimulation of the human cochlear nucleus. Hearing Research, 1989, 40, 173-177.                                                                                           | 2.0  | 23        |
| 88 | A model of threshold for pulsatile electrical stimulation of cochlear implants. Hearing Research, 1989, 40, 197-204.                                                                                         | 2.0  | 55        |
| 89 | Psychophysical suppression of selective portions of pulsation threshold patterns. Hearing Research, 1986, 21, 257-260.                                                                                       | 2.0  | 4         |
| 90 | Threshold and loudness functions for pulsatile stimulation of cochlear implants. Hearing Research, 1985, 18, 135-143.                                                                                        | 2.0  | 143       |

| #  | Article                                                                                                                                 | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91 | Multichannel electrical stimulation of the auditory nerve in man. I. Basic psychophysics. Hearing Research, 1983, 11, 157-189.          | 2.0 | 376       |
| 92 | Multichannel electrical stimulation of the auditory nerve in man. II. Channel interaction. Hearing Research, 1983, 12, 1-16.            | 2.0 | 196       |
| 93 | Twoâ€ŧone unmasking and suppression in a forwardâ€masking situation. Journal of the Acoustical Society of America, 1976, 59, 1460-1470. | 1.1 | 167       |