
Weihua Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11454861/publications.pdf Version: 2024-02-01

\λ/ειμιιλ Ζηλο

#	Article	IF	CITATIONS
1	Tregs Attenuate Peripheral Oxidative Stress and Acute Phase Proteins in <scp>ALS</scp> . Annals of Neurology, 2022, 92, 195-200.	2.8	14
2	Serum programmed cell death proteins in amyotrophic lateral sclerosis. Brain, Behavior, & Immunity - Health, 2021, 12, 100209.	1.3	6
3	Ex vivo expansion of dysfunctional regulatory T lymphocytes restores suppressive function in Parkinson's disease. Npj Parkinson's Disease, 2021, 7, 41.	2.5	32
4	Amyotrophic lateral sclerosis is a systemic disease: peripheral contributions to inflammation-mediated neurodegeneration. Current Opinion in Neurology, 2021, 34, 765-772.	1.8	35
5	Restoring regulatory T-cell dysfunction in Alzheimer's disease through ex vivo expansion. Brain Communications, 2020, 2, fcaa112.	1.5	48
6	Elevated acute phase proteins reflect peripheral inflammation and disease severity in patients with amyotrophic lateral sclerosis. Scientific Reports, 2020, 10, 15295.	1.6	34
7	Immunosuppressive Functions of M2 Macrophages Derived from iPSCs of Patients with ALS and Healthy Controls. IScience, 2020, 23, 101192.	1.9	27
8	Increased activation ability of monocytes from ALS patients. Experimental Neurology, 2020, 328, 113259.	2.0	30
9	The Role of Regulatory T Lymphocytes in Amyotrophic Lateral Sclerosis. JAMA Neurology, 2018, 75, 656.	4.5	24
10	Functional alterations of myeloid cells during the course of Alzheimer's disease. Molecular Neurodegeneration, 2018, 13, 61.	4.4	44
11	Expanded autologous regulatory T-lymphocyte infusions in ALS. Neurology: Neuroimmunology and NeuroInflammation, 2018, 5, e465.	3.1	116
12	Characterization of Gene Expression Phenotype in Amyotrophic Lateral Sclerosis Monocytes. JAMA Neurology, 2017, 74, 677.	4.5	130
13	ALS patients' regulatory T lymphocytes are dysfunctional, and correlate with disease progression rate and severity. JCI Insight, 2017, 2, e89530.	2.3	141
14	Protective and Toxic Neuroinflammation in Amyotrophic Lateral Sclerosis. Neurotherapeutics, 2015, 12, 364-375.	2.1	236
15	TDP-43 activates microglia through NF-κB and NLRP3 inflammasome. Experimental Neurology, 2015, 273, 24-35.	2.0	174
16	Role of Inflammation in Neurodegenerative Diseases. , 2015, , 380-395.		2
17	Reactive Oxygen and Nitrogen Species – A Driving Force in Amyotrophic Lateral Sclerosis. , 2014, , 3141-3165.		0
18	Immune-mediated Mechanisms in the Pathoprogression of Amyotrophic Lateral Sclerosis. Journal of NeuroImmune Pharmacology, 2013, 8, 888-899.	2.1	253

WEIHUA ZHAO

#	Article	IF	CITATIONS
19	Regulatory T″ymphocytes mediate amyotrophic lateral sclerosis progression and survival. EMBO Molecular Medicine, 2013, 5, 64-79.	3.3	289
20	Transformation from a neuroprotective to a neurotoxic microglial phenotype in a mouse model of ALS. Experimental Neurology, 2012, 237, 147-152.	2.0	346
21	Regulatory T lymphocytes from ALS mice suppress microglia and effector T lymphocytes through different cytokine-mediated mechanisms. Neurobiology of Disease, 2012, 48, 418-428.	2.1	109
22	Neuroinflammation modulates distinct regional and temporal clinical responses in ALS mice. Brain, Behavior, and Immunity, 2011, 25, 1025-1035.	2.0	170
23	Endogenous regulatory T lymphocytes ameliorate amyotrophic lateral sclerosis in mice and correlate with disease progression in patients with amyotrophic lateral sclerosis. Brain, 2011, 134, 1293-1314.	3.7	323
24	Extracellular mutant SOD1 induces microglialâ€mediated motoneuron injury. Glia, 2010, 58, 231-243.	2.5	232
25	Microglia in ALS: The Good, The Bad, and The Resting. Journal of NeuroImmune Pharmacology, 2009, 4, 389-398.	2.1	287
26	Novel therapeutic targets in neurodegenerative diseases: Lessons from amyotrophic lateral sclerosis. Current Neurology and Neuroscience Reports, 2008, 8, 353-355.	2.0	2
27	CD4+ T cells support glial neuroprotection, slow disease progression, and modify glial morphology in an animal model of inherited ALS. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 15558-15563.	3.3	401
28	Mutant SOD1G93Amicroglia are more neurotoxic relative to wild-type microglia. Journal of Neurochemistry, 2007, 102, 2008-2019.	2.1	139
29	Protective effects of an anti-inflammatory cytokine, interleukin-4, on motoneuron toxicity induced by activated microglia. Journal of Neurochemistry, 2006, 99, 1176-1187.	2.1	138
30	Wild-type microglia extend survival in PU.1 knockout mice with familial amyotrophic lateral sclerosis. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 16021-16026.	3.3	647
31	Activated Microglia Initiate Motor Neuron Injury by a Nitric Oxide and Glutamate-Mediated Mechanism. Journal of Neuropathology and Experimental Neurology, 2004, 63, 964-977.	0.9	147
32	Extracellular Vesicles Derived From Ex Vivo Expanded Regulatory T Cells Modulate In Vitro and In Vivo Inflammation. Frontiers in Immunology, 0, 13, .	2.2	14