
Michele Penza

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1145474/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Assessment of the Performance of a Low-Cost Air Quality Monitor in an Indoor Environment through Different Calibration Models. Atmosphere, 2022, 13, 567.	1.0	10
2	Optical methods to identify end-of-life PV panel structure. Resources, Conservation and Recycling, 2021, 171, 105634.	5.3	9
3	Low-cost sensors for outdoor air quality monitoring. , 2020, , 235-288.		13
4	Design and Development of a Flexible, Plug-and-Play, Cost-Effective Tool for on-Field Evaluation of Gas Sensors. Journal of Sensors, 2020, 2020, 1-20.	0.6	18
5	Influence of the synthesis conditions on the microstructural, compositional and morphological properties of graphene oxide sheets. Ceramics International, 2020, 46, 22067-22078.	2.3	6
6	Synthesis of nanocrystalline ZnS/TiO2 films for enhanced NO2 gas sensing. Thin Solid Films, 2020, 709, 138190.	0.8	13
7	Toward a Unified Terminology of Processing Levels for Low-Cost Air-Quality Sensors. Environmental Science & Technology, 2019, 53, 8485-8487.	4.6	24
8	Deliberating performance targets workshop: Potential paths for emerging PM2.5 and O3 air sensor progress. Atmospheric Environment: X, 2019, 2, 100031.	0.8	36
9	Wireless Sensors Network Monitoring of Saharan Dust Events in Bari, Italy. Proceedings (mdpi), 2018, 2, 898.	0.2	4
10	Assessment of air quality microsensors versus reference methods: The EuNetAir Joint Exercise – Part II. Atmospheric Environment, 2018, 193, 127-142.	1.9	72
11	Sensing properties of MWCNTs layers electrodecorated with metal nanoparticles for detection of aromatic hydrocarbon compounds. MRS Advances, 2017, 2, 1009-1014.	0.5	3
12	Enhanced gas sensing properties of chemiresistors based on ZnO nanorods electrodecorated with Au and Pd nanoparticles. MRS Advances, 2017, 2, 1001-1007.	0.5	1
13	Urban Air Quality Monitoring with Networked Low-Cost Sensor-Systems. Proceedings (mdpi), 2017, 1, 573.	0.2	21
14	Sensitive detection of hydrocarbon gases using electrochemically Pd-modified ZnO chemiresistors. Beilstein Journal of Nanotechnology, 2017, 8, 82-90.	1.5	15
15	Gas sensing properties of MWCNT layers electrochemically decorated with Au and Pd nanoparticles. Beilstein Journal of Nanotechnology, 2017, 8, 592-603.	1.5	18
16	Functional materials for environmental sensors and energy systems. Beilstein Journal of Nanotechnology, 2017, 8, 2015-2016.	1.5	1
17	Evaluation of gas-sensing properties of ZnO nanostructures electrochemically doped with Au nanophases. Beilstein Journal of Nanotechnology, 2016, 7, 22-31.	1.5	39
18	Assessment of air quality microsensors versus reference methods: The EuNetAir joint exercise. Atmospheric Environment, 2016, 147, 246-263.	1.9	182

#	Article	IF	CITATIONS
19	Electrophoretic deposition of Au NPs on MWCNT-based gas sensor for tailored gas detection with enhanced sensing properties. Sensors and Actuators B: Chemical, 2016, 223, 417-428.	4.0	58
20	Electrochemically growth of Pd doped ZnO nanorods on QCM for room temperature VOC sensors. Sensors and Actuators B: Chemical, 2016, 222, 280-289.	4.0	96
21	20 - The Case-Study of the RES-NOVAE National Project: Low-Cost Sensor-Systems for Urban Air Quality Monitoring. , 2016, , .		0
22	Controlled electrochemical functionalization of MOx nanostructures by Au NPs for gas sensing application. Materials Research Society Symposia Proceedings, 2015, 1805, 1.	0.1	0
23	Enhancement of the gas sensing performance of carbon nanotube networked films based on their electrophoretic functionalization with gold nanoparticles. Materials Research Society Symposia Proceedings, 2015, 1786, 37-42.	0.1	2
24	COST Action TD1105 - European Network on New Sensing Technologies for Air Pollution Control and Environmental Sustainability. Overview and Plans. Procedia Engineering, 2015, 120, 476-479.	1.2	4
25	Tetra-tert-butyl copper phthalocyanine-based QCM sensor for toluene detection in air at room temperature. Sensors and Actuators B: Chemical, 2015, 210, 398-407.	4.0	71
26	A case-study of microsensors for landfill air-pollution monitoring applications. Urban Climate, 2015, 14, 351-369.	2.4	11
27	15 - Stationary and Mobile Low-Cost Gas Sensor-Systems for Air Quality Monitoring Applications. , 2015, , .		6
28	08 - The European Sensor Systems Cluster - ESSC: A New EC Initiative. , 2015, , .		0
29	Towards air quality indices in smart cities by calibrated low-cost sensors applied to networks. , 2014, ,		37
30	COST action TD1105: New sensing technologies for environmental sustainability in smart cities. , 2014, ,		6
31	Carbon Nanotube Gas Sensors. Springer Series on Chemical Sensors and Biosensors, 2014, , 109-174.	0.5	10
32	COST Action TD1105: Overview of Sensor-systems for Air-quality Monitoring. Procedia Engineering, 2014, 87, 1370-1377.	1.2	15
33	Electrophoretic deposition of Au NPs on CNT networks for sensitive NO ₂ detection. Journal of Sensors and Sensor Systems, 2014, 3, 245-252.	0.6	5
34	COST Action TD1105 on New Sensing Technologies for Air-Pollution Control and Environmental Sustainability: Overview in Europe and New Trends. Lecture Notes in Electrical Engineering, 2014, , 95-98.	0.3	1
35	Organic Vapor Detection by QCM Sensors Using CNT-Composite Films. Lecture Notes in Electrical Engineering, 2012, , 79-85.	0.3	3
36	Tuned Sensing Properties of Metal-Modified Carbon-Based Nanostructures Layers for Gas Microsensors. Lecture Notes in Electrical Engineering, 2012, , 115-119.	0.3	2

#	Article	IF	CITATIONS
37	P2.9.23 Portable Chemical Sensor-System for Urban Air-Pollution Monitoring. , 2012, , .		1
38	Application of Artificial Neural Networks to a Gas Sensor-Array Database for Environmental Monitoring. Lecture Notes in Electrical Engineering, 2012, , 139-144.	0.3	7
39	Odour Detection Methods: Olfactometry and Chemical Sensors. Sensors, 2011, 11, 5290-5322.	2.1	174
40	A Gas Sensor Array For Environmental Air Monitoring: A Study Case Of Application Of Artificial Neural Networks. AIP Conference Proceedings, 2011, , .	0.3	8
41	The environmental chemical tributyltin chloride (TBT) shows both estrogenic and adipogenic activities in mice which might depend on the exposure dose. Toxicology and Applied Pharmacology, 2011, 255, 65-75.	1.3	73
42	Pt-modified carbon nanotube networked layers for enhanced gas microsensors. Thin Solid Films, 2011, 520, 959-965.	0.8	32
43	Carbon nanotube films as a platform to transduce molecular recognition events in metalloporphyrins. Nanotechnology, 2011, 22, 125502.	1.3	42
44	A Portable Gas Sensor System for Environmental Monitoring and Malodours Control: Data Assessment of an Experimental Campaign. , 2011, , .		1
45	Thermoelectric Properties of Carbon Nanotubes Layers. Lecture Notes in Electrical Engineering, 2011, , 73-79.	0.3	3
46	Metalloporphyrin-Modified Carbon Nanotube Layers for Gas Microsensors. Sensor Letters, 2011, 9, 913-919.	0.4	2
47	SAW Gas Sensors with Metal Oxides Nanoplatelets Layers. Sensor Letters, 2011, 9, 920-924.	0.4	3
48	SAW Gas Sensors with Titania Nanotubes Layers. Sensor Letters, 2011, 9, 925-928.	0.4	2
49	Selected Peer-Reviewed Articles from 13th International Meeting on Chemical Sensors (IMCS-13). Sensor Letters, 2011, 9, 584-586.	0.4	0
50	Metalloporphyrins-modified carbon nanotubes networked films-based chemical sensors for enhanced gas sensitivity. Sensors and Actuators B: Chemical, 2010, 144, 387-394.	4.0	67
51	Microstructured Optical Fibers Filled with Carbon Nanotubes: Photonic Bandgap Modification and Sensing Applications. , 2010, , .		2
52	Metal-modified and vertically aligned carbon nanotube sensors array for landfill gas monitoring applications. Nanotechnology, 2010, 21, 105501.	1.3	115
53	Metal-Functionalized and Vertically-Aligned Multiwalled Carbon Nanotube Layers for Low Temperature Gas Sensing Applications. Lecture Notes in Electrical Engineering, 2010, , 185-191.	0.3	0
54	Nanomaterials for Chemical Sensing Technologies. Journal of Sensors, 2009, 2009, 1-2.	0.6	5

#	Article	IF	CITATIONS
55	Photonic bandgap modification in hollow optical fibers integrated with single walled carbon nanotubes. Microwave and Optical Technology Letters, 2009, 51, 2729-2732.	0.9	4
56	SWCNT nano-composite optical sensors for VOC and gas trace detection. Sensors and Actuators B: Chemical, 2009, 138, 351-361.	4.0	79
57	Characterization of metal-modified and vertically-aligned carbon nanotube films for functionally enhanced gas sensor applications. Thin Solid Films, 2009, 517, 6211-6216.	0.8	67
58	Functional characterization of carbon nanotube networked films functionalized with tuned loading of Au nanoclusters for gas sensing applications. Sensors and Actuators B: Chemical, 2009, 140, 176-184.	4.0	121
59	Metalloporphyrins-functionalized carbon nanotube networked films for room-temperature VOCs sensing applications. Procedia Chemistry, 2009, 1, 975-978.	0.7	14
60	Charge transfer effects on the sensing properties of fiber optic chemical nano-sensors based on single-walled carbon nanotubes. Carbon, 2009, 47, 782-788.	5.4	25
61	Effects of reducing interferers in a binary gas mixture on NO ₂ gas adsorption using carbon nanotube networked films based chemiresistors. Journal Physics D: Applied Physics, 2009, 42, 072002.	1.3	13
62	Hollow fibers integrated with single walled carbon nanotubes: Bandgap modification and chemical sensing capability. Sensors and Actuators B: Chemical, 2008, 129, 163-170.	4.0	16
63	Pt- and Pd-nanoclusters functionalized carbon nanotubes networked films for sub-ppm gas sensors. Sensors and Actuators B: Chemical, 2008, 135, 289-297.	4.0	116
64	Thin-Film Bulk-Acoustic-Resonator Gas Sensor Functionalized With a Nanocomposite Langmuir–Blodgett Layer of Carbon Nanotubes. IEEE Transactions on Electron Devices, 2008, 55, 1237-1243.	1.6	60
65	OPTICAL FIBER AND ACOUSTIC SENSORS BASED ON SINGLE WALLED CARBON NANOTUBES FOR CHEMICAL DETECTION OF ORGANIC VAPORS. , 2008, , .		0
66	SAW Gas Sensors with Carbon Nanotubes Films. , 2008, , .		2
67	Novel sensitive nanocoatings based on SWCNT composites for advanced fiber optic chemo-sensors. , 2008, , .		2
68	SWCNTs-based nanocomposites as sensitive coatings for advanced fiber optic chemical nanosensors. , 2008, , .		1
69	GAS SENSORS FABRICATED FROM CARBON NANOTUBES FILMS FUNCTIONALIZED WITH NANOCLUSTERS OF Au, Pt, AND Pd. , 2008, , .		0
70	Surface Acoustic Wave 915 MHz resonator oscillator gas sensors using SnO <inf>2</inf> nanowires-based nanocomposite layer. , 2008, , .		0
71	HOLLOW-CORE OPTICAL FIBERS INTEGRATED WITH SINGLE WALLED CARBON NANOTUBES AS VOCS SENSORS. , 2008, , .		0
72	Surface Modification of Carbon Nanotube Networked Films with Au Nanoclusters for Enhanced Gas Sensing Applications. Journal of Sensors, 2008, 2008, 1-8.	0.6	16

#	Article	IF	CITATIONS
73	Fiber Optic Chemical Nanosensors Based on Engineered Single-Walled Carbon Nanotubes. Journal of Sensors, 2008, 2008, 1-29.	0.6	19
74	Toluene Detection in Aqueous Phase by Optical Fiber Sensors Integrated with Single-Walled Carbon Nanotubes~!2008-04-21~!2008-05-19~!2008-06-11~!. The Open Environmental & Biological Monitoring Journal, 2008, 1, 26-32.	1.0	1
75	Optical Fiber Sensors For Hydrogen Detection At Cryogenic Temperatures. , 2008, , .		0
76	A Photonic Bandgap Fiber Sensor Based On Single Walled Carbon Nanotubes As Sensing Material. , 2008, , .		0
77	VAPOR SENSOR USING THIN FILM BULK ACOUSTIC RESONATOR COATED BY CARBON NANOTUBES-BASED NANOCOMPOSITE LAYER. , 2008, , .		0
78	METAL FUNCTIONALISED CARBON NANOTUBES THIN FILMS GAS CHEMIRESISTORS. , 2008, , .		0
79	OPTOELECTRONIC NANOSENSORS BASED ON CARBON NANOTUBES NANOCOMPOSITES FOR THE DETECTION OF ENVIRONMENTAL POLLUTANTS IN AIR AND WATER ENVIRONMENT. , 2008, , .		0
80	SINGLE-WALLED CARBON NANOTUBES NANOCOMPOSITE MICROACOUSTIC SENSORS FOR DETECTION OF ORGANIC VAPORS. , 2008, , .		0
81	SURFACE ACOUSTIC WAVE VAPOR SENSOR COATED WITH CARBON NANOTUBES-BASED NANOCOMPOSITE LANGMUIR-BLODGETT FILM. , 2008, , .		0
82	Hollow Fibers Integrated with Single Walled Carbon Nanotubes: Bandgap Modification and Chemical Sensing Capability. Conference Record - IEEE Instrumentation and Measurement Technology Conference, 2007, , .	0.0	0
83	Effect of growth catalysts on gas sensitivity in carbon nanotube film based chemiresistive sensors. Applied Physics Letters, 2007, 90, 103101.	1.5	56
84	Cadmium arachidate single-walled carbon nanotubes composites as sensitive coatings for high sensitivity fiber optic chemo-sensors. Proceedings of SPIE, 2007, , .	0.8	0
85	Optical fibre sensors coated with carbon nanotubes, tin dioxide, and nanoporous polymers for cryogenic detection of hydrogen. Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanoengineering and Nanosystems, 2007, 221, 23-35.	0.1	0
86	Hollow-core optical fiber functionalized with single walled carbon nanotubes for VOC detection. Proceedings of SPIE, 2007, , .	0.8	0
87	Hollow fibres integrated with single walled carbon nanotubes as novel opto-chemical sensors. , 2007, , .		0
88	The effect of purification of single-walled carbon nanotube bundles on the alcohol sensitivity of nanocomposite Langmuir–Blodgett films for SAW sensing applications. Nanotechnology, 2007, 18, 185502.	1.3	37
89	Enhancement of sensitivity in gas chemiresistors based on carbon nanotube surface functionalized with noble metal (Au, Pt) nanoclusters. Applied Physics Letters, 2007, 90, 173123.	1.5	148
90	Chemical Detection in Water by Single-Walled Carbon Nanotubes-Based Optical Fiber Sensors. IEEE Sensors Journal, 2007, 7, 1004-1005.	2.4	21

#	Article	IF	CITATIONS
91	Carbon Nanotubes Coated Acoustic and Optical VOCs Sensors: Towards the Tailoring of the Sensing Performances. IEEE Nanotechnology Magazine, 2007, 6, 601-612.	1.1	20
92	Thin Film Bulk Acoustic Resonator Vapor Sensors with Single-Walled Carbon Nanotubes-based Nanocomposite Layer. , 2007, , .		1
93	Layered SAW gas sensor with single-walled carbon nanotube-based nanocomposite coating. Sensors and Actuators B: Chemical, 2007, 127, 168-178.	4.0	86
94	Acoustic and Optical VOCs Sensors Incorporating Carbon Nanotubes. IEEE Sensors Journal, 2006, 6, 867-875.	2.4	31
95	Novel Optochemical Sensors Based on Hollow Fibers and Single Walled Carbon Nanotubes. IEEE Photonics Technology Letters, 2006, 18, 2431-2433.	1.3	16
96	Optical Fiber Sensors coated with Carbon Nanotubes, Tin Dioxide and Nanoporous Polymers for Cryogenic Detection of Hydrogen. , 2006, , .		0
97	Optical Fiber Probes for Cryogenic Detection of Hydrogen. , 2006, , TuE70.		0
98	Single-walled carbon nanotubes nanocomposite microacoustic organic vapor sensors. Materials Science and Engineering C, 2006, 26, 1165-1170.	3.8	27
99	Carbon nanotubes thin films fiber optic and acoustic VOCs sensors: Performances analysis. Sensors and Actuators B: Chemical, 2006, 118, 232-242.	4.0	70
100	RF sputtering deposition of alternate TiN/ZrN multilayer hard coatings. Thin Solid Films, 2006, 515, 500-504.	0.8	21
101	Sensing properties of buffered and not buffered carbon nanotubes by fibre optic and acoustic sensors. Measurement Science and Technology, 2006, 17, 1220-1228.	1.4	20
102	Optical probes based on optical fibers and single-walled carbon nanotubes for hydrogen detection at cryogenic temperatures. Applied Physics Letters, 2006, 89, 201106.	1.5	18
103	Recognition of organic solvents molecules by simultaneous detection using SAW oscillator sensors and optical fiber devices coated by Langmuir-Blodgett cadmium arachidate films. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2006, 53, 1493-1502.	1.7	6
104	Multi-transduction approach and data fusion for enhanced performance of features extraction in chemical sensing applications. , 2005, 5855, 463.		0
105	Simultaneous detection of organic vapors by optical fiber and acoustic sensors based on single-walled carbon nanotubes. , 2005, , .		Ο
106	Carbon nanotubes-based surface acoustic waves oscillating sensor for vapour detection. Thin Solid Films, 2005, 472, 246-252.	0.8	63
107	Tin oxide thin films prepared by laser-assisted metal–organic CVD: Structural and gas sensing properties. Surface and Coatings Technology, 2005, 200, 1057-1060.	2.2	29
108	Organic-vapor detection using carbon-nanotubes nanocomposite microacoustic sensors. Chemical Physics Letters, 2005, 409, 349-354.	1.2	42

#	Article	IF	CITATIONS
109	Carbon nanotubes-coated multi-transducing sensors for VOCs detection. Sensors and Actuators B: Chemical, 2005, 111-112, 171-180.	4.0	61
110	Carbon nanotube acoustic and optical sensors for volatile organic compound detection. Nanotechnology, 2005, 16, 2536-2547.	1.3	114
111	Alcohol detection using carbon nanotubes acoustic and optical sensors. Applied Physics Letters, 2004, 85, 2379-2381.	1.5	134
112	Chemometric characterization of Italian wines by thin-film multisensors array and artificial neural networks. Food Chemistry, 2004, 86, 283-296.	4.2	89
113	Carbon nanotubes as SAW chemical sensors materials. Sensors and Actuators B: Chemical, 2004, 100, 47-59.	4.0	215
114	Recognition of adulteration of Italian wines by thin-film multisensor array and artificial neural networks. Analytica Chimica Acta, 2004, 509, 159-177.	2.6	56
115	Vapor sensing properties of carbon nanotubes onto cadmium arachidate multilayer investigated by optical-fiber-based reflectometer sensor and acoustic sensors. , 2004, 5502, 243.		0
116	VAPOUR SENSING PROPERTIES OF CARBON NANOTUBES BY USING A SURFACE ACOUSTIC WAVES SENSOR. , 2004, , .		1
117	Application of principal component analysis and artificial neural networks to recognize the individual VOCs of methanol/2-propanol in a binary mixture by SAW multi-sensor array. Sensors and Actuators B: Chemical, 2003, 89, 269-284.	4.0	90
118	Identification and quantification of individual volatile organic compounds in a binary mixture by SAW multisensor array and pattern recognition analysis. Measurement Science and Technology, 2002, 13, 846-858.	1.4	27
119	SAW chemical sensing using poly-ynes and organometallic polymer films. Sensors and Actuators B: Chemical, 2001, 81, 88-98.	4.0	57
120	Classification of food, beverages and perfumes by WO3 thin-film sensors array and pattern recognition techniques. Sensors and Actuators B: Chemical, 2001, 73, 76-87.	4.0	75
121	Gas recognition by activated WO3 thin-film sensors array. Sensors and Actuators B: Chemical, 2001, 81, 115-121.	4.0	98
122	Relative humidity sensing by PVA-coated dual resonator SAW oscillator. Sensors and Actuators B: Chemical, 2000, 68, 300-306.	4.0	133
123	A Novel Tool for Experimental Analysis of Surface Phenomena. , 2000, , 231-238.		0
124	GAS SENSING PROPERTIES OF POLYMERIC FILMS INVESTIGATED BY SURFACE ACOUSTIC WAVES. , 2000, , .		0
125	A study of SAW gas sensing versus gas concentration. , 1999, , .		3
126	Characterization of transparent and conductive electrodes of indium tin oxide thin films by sequential reactive evaporation. Thin Solid Films, 1999, 349, 71-77.	0.8	27

8

#	Article	IF	CITATIONS
127	Characterisation of ZnS:Mn thin films by Rietveld refinement of Bragg–Brentano X-ray diffraction patterns. Thin Solid Films, 1999, 353, 129-136.	0.8	14
128	High quality ZnS:Mn thin films grown by quasi-rheotaxy for electroluminescent devices. Thin Solid Films, 1999, 348, 49-55.	0.8	5
129	Surface acoustic wave humidity sensor using polyvinyl-alcohol film. Sensors and Actuators A: Physical, 1999, 76, 162-166.	2.0	96
130	Monitoring of NH3 gas by LB polypyrrole-based SAW sensor. Sensors and Actuators B: Chemical, 1998, 47, 218-224.	4.0	60
131	SAW gas detection using Langmuir–Blodgett polypyrrole films. Thin Solid Films, 1998, 327-329, 694-697.	0.8	23
132	Tungsten trioxide (WO3) sputtered thin films for a NOx gas sensor. Sensors and Actuators B: Chemical, 1998, 50, 9-18.	4.0	191
133	NOx gas sensing characteristics of WO3 thin films activated by noble metals (Pd, Pt, Au) layers. Sensors and Actuators B: Chemical, 1998, 50, 52-59.	4.0	306
134	AC and DC measurements on Langmuir-Blodgett polypyrrole films for selective NH3 gas detection. Materials Science and Engineering C, 1998, 5, 255-258.	3.8	21
135	Gas sensing properties of Langmuir-Blodgett polypyrrole film investigated by surface acoustic waves. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1998, 45, 1125-1132.	1.7	42
136	Characterization and imaging of SAW grooved transducer acoustic field by SLAM. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1997, 44, 1232-1238.	1.7	0
137	Selective gas detection using uncoated SAW delay lines. Sensors and Actuators B: Chemical, 1997, 42, 103-107.	4.0	4
138	Thermoconductometric detection of gases and gas flows by means of SAW delay lines. Technical Physics, 1997, 42, 564-568.	0.2	0
139	Selective NH3 gas sensor based on Langmuir-Blodgett polypyrrole film. Sensors and Actuators B: Chemical, 1997, 40, 205-209.	4.0	62
140	SAW NOx gas sensor using WO3 thin-film sensitive coating. Sensors and Actuators B: Chemical, 1997, 41, 31-36.	4.0	47
141	Deposition of Doped and Undoped ZnO Thin Films fo Gas Sensors. Materials Science Forum, 1996, 203, 137-142.	0.3	18
142	Detection of combustible gases by means of a ZnO-on-Si surface acoustic wave (SAW) delay line. Sensors and Actuators B: Chemical, 1995, 23, 197-201.	4.0	39
143	Low temperature growth of r.f. reactively planar magnetron-sputtered AlN films. Thin Solid Films, 1995, 259, 154-162.	0.8	58
144	Gas thermal conductivity sensor based on SAW. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1995, 42, 978-980.	1.7	14

#	Article	IF	CITATIONS
145	The stability of zinc oxide electrodes fabricated by dual ion beam sputtering. Journal of Applied Physics, 1993, 73, 1143-1145.	1.1	39
146	Dualâ€ionâ€beam sputter deposition of TiN films. Journal of Applied Physics, 1991, 69, 7360-7362.	1.1	20
147	SAW gas detection using uncommon delay lines. , 0, , .		2
148	Uncoated SAW delay lines as thermal gas detector. , 0, , .		0
149	Acoustic and optical sensors incorporating carbon nanotubes for detection of organic solvents. , 0, ,		2
150	Fiber Optic Chemical Sensors Based on Single-Walled Carbon Nanotubes: Perspectives and Challenges. , 0, , .		0
151	SAW delay lines for thermal detection of gases and gas flows. , 0, , .		4