
Pavel Janda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1145447/publications.pdf Version: 2024-02-01

DAVEL LANDA

#	Article	IF	CITATIONS
1	Atomic layer deposited films of Al2O3 on fluorine-doped tin oxide electrodes: stability and barrier properties. Beilstein Journal of Nanotechnology, 2021, 12, 24-34.	2.8	1
2	Work Function of TiO ₂ (Anatase, Rutile, and Brookite) Single Crystals: Effects of the Environment. Journal of Physical Chemistry C, 2021, 125, 1902-1912.	3.1	77
3	Nanobubble-Assisted Nanopatterning Reveals the Existence of Liquid Quasi-Two-Dimensional Foams Pinned to a Water-Immersed Surface. Langmuir, 2020, 36, 7200-7209.	3.5	3
4	Cobalt pyridinoporphyrazine film as a platinum group metal-free mediator in hydrogen electrochemistry. Monatshefte Für Chemie, 2019, 150, 1643-1650.	1.8	1
5	Hydrogen evolution reaction enhanced by water-soluble metallopyridinoporphyrazine complex adsorbed on highly oriented pyrolytic graphite. International Journal of Hydrogen Energy, 2019, 44, 11431-11440.	7.1	4
6	Photoacoustic spectroscopy with mica and graphene micro-mechanical levers for multicomponent analysis of acetic acid, acetone and methanol mixture. Microchemical Journal, 2019, 144, 203-208.	4.5	17
7	Electrochemically controlled winding and unwinding of substrate-supported carbon nanoscrolls. Physical Chemistry Chemical Physics, 2018, 20, 5900-5908.	2.8	3
8	Chemical modification of diamond surface by a donor–acceptor organic chromophore (P1): Optimization of surface chemistry and electronic properties of diamond. Applied Materials Today, 2018, 12, 153-162.	4.3	11
9	First application of multilayer graphene cantilever for laser photoacoustic detection. Measurement: Journal of the International Measurement Confederation, 2017, 101, 9-14.	5.0	13
10	Nickel-cobalt hydroxide nanosheets: Synthesis, morphology and electrochemical properties. Journal of Colloid and Interface Science, 2017, 499, 138-144.	9.4	19
11	Novel highly active Pt/graphene catalyst for cathodes of Cu(II/I)-mediated dye-sensitized solar cells. Electrochimica Acta, 2017, 251, 167-175.	5.2	43
12	Hydrogen sulfide detection by poly(methylene blue) modified highly oriented pyrolytic graphite electrode. Monatshefte Für Chemie, 2017, 148, 1595-1597.	1.8	2
13	Versatile cell for in-situ spectroelectrochemical and ex-situ nanomorphological characterization of both water soluble and insoluble phthalocyanine compounds. Monatshefte Für Chemie, 2016, 147, 1393-1400.	1.8	2
14	Single-Step Nanoporation of Water-Immersed Polystyrene Film by Gaseous Nanobubbles. Langmuir, 2016, 32, 11221-11229.	3.5	5
15	Interface of Two Immiscible Electrolytes as a Potentiometric Sensor for Flow Analysis. Analytical Letters, 2016, 49, 169-177.	1.8	2
16	Time-resolved potentiometry on dual interface of two immiscible electrolyte solutions (ITIES): Step towards qualitative potentiometric analysis. Electrochimica Acta, 2015, 182, 1053-1059.	5.2	0
17	Boron-doped Diamond Electrodes: Electrochemical, Atomic Force Microscopy and Raman Study towards Corrosion-modifications at Nanoscale. Electrochimica Acta, 2015, 179, 626-636.	5.2	35
18	Surface Rearrangement of Water-Immersed Hydrophobic Solids by Gaseous Nanobubbles. Langmuir, 2014, 30, 14522-14531.	3.5	11

Pavel Janda

#	Article	IF	CITATIONS
19	Spontaneous Adsorption of a Co-Phthalocyanine Ionic Derivative on HOPG. An In Situ EPR Study. Journal of Physical Chemistry C, 2014, 118, 4198-4206.	3.1	5
20	Nickel hydroxide ultrathin nanosheets as building blocks for electrochemically active layers. Journal of Materials Chemistry A, 2013, 1, 11429.	10.3	23
21	Dense TiO ₂ films grown by sol–gel dip coating on glass, F-doped SnO ₂ , and silicon substrates. Journal of Materials Research, 2013, 28, 385-393.	2.6	12
22	Bovine serum albumin film as a template for controlled nanopancake and nanobubble formation: In situ atomic force microscopy and nanolithography study. Colloids and Surfaces B: Biointerfaces, 2012, 94, 213-219.	5.0	26
23	Few-Layer ZnO Nanosheets: Preparation, Properties, and Films with Exposed {001} Facets. Journal of Physical Chemistry C, 2011, 115, 24702-24706.	3.1	26
24	Raman Spectroscopy and in Situ Raman Spectroelectrochemistry of Bilayer ¹² C/ ¹³ C Graphene. Nano Letters, 2011, 11, 1957-1963.	9.1	104
25	Crystallic silver amalgam – a novel electrode material. Analyst, The, 2011, 136, 3656.	3.5	37
26	Layered zinc hydroxide salts: Delamination, preferred orientation of hydroxide lamellae, and formation of ZnO nanodiscs. Journal of Colloid and Interface Science, 2011, 360, 532-539.	9.4	35
27	Nanoshaving of bovine serum albumin films adsorbed on monocrystalline surfaces and interfaces. Collection of Czechoslovak Chemical Communications, 2011, 76, 1075-1087.	1.0	7
28	A Study of the Modification of the Gold Electrode Surface with a Calix[4]arene Selfâ€Assembled Monolayer. Electroanalysis, 2010, 22, 2051-2057.	2.9	12
29	Nanobubble-assisted formation of carbon nanostructures on basal plane highly ordered pyrolytic graphite exposed to aqueous media. Nanotechnology, 2010, 21, 095707.	2.6	29
30	Rotating Cell for in Situ Raman Spectroelectrochemical Studies of Photosensitive Redox Systems. Analytical Chemistry, 2009, 81, 2017-2021.	6.5	12
31	Self-Assemblies of Cationic Porphyrins with Functionalized Water-Soluble Single-Walled Carbon Nanotubes. Journal of Nanoscience and Nanotechnology, 2009, 9, 5795-5802.	0.9	8
32	Porphyrin/calixarene self-assemblies in aqueous solution. Journal of Photochemistry and Photobiology A: Chemistry, 2008, 198, 18-25.	3.9	16
33	Photoactive oriented films of layered double hydroxides. Physical Chemistry Chemical Physics, 2008, 10, 4429.	2.8	23
34	Multilayer Films from Templated TiO ₂ and Structural Changes during their Thermal Treatment. Chemistry of Materials, 2008, 20, 2985-2993.	6.7	59
35	Preparation of Au-Pt Nanostructures on Highly Oriented Pyrolytic Graphite Surfaces by Pulsed Laser Deposition and Their Characterization by XPS and AFM Methods. Collection of Czechoslovak Chemical Communications, 2008, 73, 1299-1313.	1.0	3
36	Tetraphenylporphyrin-cobalt(III) Bis(1,2-dicarbollide) Conjugates:Â From the Solution Characteristics to Inhibition of HIV Protease. Journal of Physical Chemistry B, 2007, 111, 4539-4546.	2.6	38

PAVEL JANDA

#	Article	IF	CITATIONS
37	Effect of the vapor-deposited Au nanoparticles on the rate of the redox reaction at the highly oriented pyrolytic graphite electrode. Journal of Electroanalytical Chemistry, 2007, 605, 31-40.	3.8	4
38	Nickel nanoparticle assembly on single-crystal support: formation, composition and stability. Nanotechnology, 2006, 17, 1492-1500.	2.6	10
39	Surface electrochemistry of N,N',N″,N‴-tetramethyl-tetra-3,4-pyridinoporphyrazinocobalt(II). Journal of Porphyrins and Phthalocyanines, 2006, 10, 1238-1248.	0.8	8
40	Copper deposition on fullerene nanostructures. Surface Science, 2005, 597, 26-31.	1.9	3
41	Isolated Nanoribbons of Carbon Nanotubes and Peapods. ChemPhysChem, 2005, 6, 426-430.	2.1	9
42	Isolation of Carbon Nanostructures. AIP Conference Proceedings, 2005, , .	0.4	0
43	Electrochemical nanostructuring of fullerene films—spectroscopic evidence for C60 polymer formation and hydrogenation. Physical Chemistry Chemical Physics, 2005, 7, 3179.	2.8	18
44	Interaction of Porphyrins with a Dendrimer Template:Â Self-Aggregation Controlled by pH. Langmuir, 2005, 21, 9714-9720.	3.5	73
45	Charge transfer reductive doping of single crystal TiO2 anatase. Journal of Electroanalytical Chemistry, 2004, 566, 73-83.	3.8	90
46	Quantitative Depth Profiling of K-Doped Fullerene Films Using XPS and SIMS. Mikrochimica Acta, 2003, 141, 79-85.	5.0	6
47	Nanostructuring of Highly Ordered C60 Films by Charge Transfer. Advanced Materials, 1998, 10, 1434-1438.	21.0	70
48	Monomeric and Polymeric Tetra-aminophthalocyanatocobalt(II) Modified Electrodes: Electrocatalytic Reduction of Oxygen. Journal of Porphyrins and Phthalocyanines, 1997, 01, 3-16.	0.8	110
49	Detection of Ascorbic Acid Using a Carbon Fiber Microelectrode Coated with Cobalt Tetramethylpyridoporphyrazine. Analytical Chemistry, 1996, 68, 960-965.	6.5	83
50	Electrode with electropolymerized tetraaminophthalocyanatocobalt(II) for detection of sulfide ion. Analytical Chemistry, 1995, 67, 981-985.	6.5	99
51	Synthesis, spectroscopy, electrochemistry, spectroelectrochemistry, Langmuir-Blodgett film formation, and molecular orbital calculations of planar binuclear phthalocyanines. Journal of the American Chemical Society, 1994, 116, 879-890.	13.7	198
52	Electrode with electrochemically deposited N,N',N'',N'''-tetramethyltetra-3,4-pyridinoporphyrazinocobalt(I) for detection of sulfide ion. Analytical Chemistry, 1994, 66, 384-390.	6.5	95
53	Cathodic reduction of oxygen and hydrogen peroxide at cobalt and iron crowned phthalocyanines adsorbed on highly oriented pyrolytic graphite electrodes. Inorganic Chemistry, 1992, 31, 5172-5177.	4.0	116
54	Quinone-mediated glucose oxidase electrode with the enzyme immobilized in polypyrrole. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1991, 300, 119-127.	0.1	89

Pavel Janda

#	Article	IF	CITATIONS
55	Electrochemistry and spectroelectrochemistry of 1,8-naphthalene- and 1,8-anthracene-linked cofacial binuclear metallophthalocyanines. New mixed-valence metallophthalocyanines. Inorganic Chemistry, 1990, 29, 3415-3425.	4.0	80
56	A planar binuclear phthalocyanine and its dicobalt derivatives. Journal of the Chemical Society Chemical Communications, 1987, , 699.	2.0	67
57	1,8-Naphthalene-Linked Cofacial Dimeric Phthalocyanines. Angewandte Chemie International Edition in English, 1987, 26, 1021-1023.	4.4	34
58	Modification of glassy carbon electrodes by a new type of polymeric viologen. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1984, 180, 109-120.	0.1	13