Laurent Dufossé

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1145275/publications.pdf Version: 2024-02-01

		117619	114455
122	4,705	34	63
papers	citations	h-index	g-index
135	135	135	4345
all docs	docs citations	times ranked	citing authors

LAUDENT DUFOSS \tilde{A}

#	Article	lF	CITATIONS
1	Microorganisms and microalgae as sources of pigments for food use: a scientific oddity or an industrial reality?. Trends in Food Science and Technology, 2005, 16, 389-406.	15.1	495
2	Filamentous fungi are large-scale producers of pigments and colorants for the food industry. Current Opinion in Biotechnology, 2014, 26, 56-61.	6.6	261
3	Enzymatic hydrolysis of proteins from yellowfin tuna (Thunnus albacares) wastes using Alcalase. Journal of Molecular Catalysis B: Enzymatic, 2001, 11, 1051-1059.	1.8	200
4	Kinetic study on the Maillard reaction. Consideration of sugar reactivity. Food Chemistry, 2008, 111, 1032-1042.	8.2	197
5	Inhibition of marine bacteria by extracts of macroalgae: potential use for environmentally friendly antifouling paints. Marine Environmental Research, 2001, 52, 231-247.	2.5	179
6	Separation and determination of the physico-chemical characteristics of curcumin, demethoxycurcumin and bisdemethoxycurcumin. Food Research International, 2005, 38, 1039-1044.	6.2	155
7	Anthraquinones and Derivatives from Marine-Derived Fungi: Structural Diversity and Selected Biological Activities. Marine Drugs, 2016, 14, 64.	4.6	135
8	Natural hydroxyanthraquinoid pigments as potent food grade colorants: an overview. Natural Products and Bioprospecting, 2012, 2, 174-193.	4.3	132
9	Multifaceted Applications of Microbial Pigments: Current Knowledge, Challenges and Future Directions for Public Health Implications. Microorganisms, 2019, 7, 186.	3.6	115
10	Fungal Pigments and Their Prospects in Different Industries. Microorganisms, 2019, 7, 604.	3.6	111
11	Optimization of free radical scavenging activity by response surface methodology in the hydrolysis of shrimp processing discards. Process Biochemistry, 2007, 42, 1486-1491.	3.7	99
12	Red colourants from filamentous fungi: Are they ready for the food industry?. Journal of Food Composition and Analysis, 2018, 69, 156-161.	3.9	71
13	Fungal Pigments: Potential Coloring Compounds for Wide Ranging Applications in Textile Dyeing. Journal of Fungi (Basel, Switzerland), 2020, 6, 68.	3.5	71
14	Bacterial Pigments: Sustainable Compounds With Market Potential for Pharma and Food Industry. Frontiers in Sustainable Food Systems, 2020, 4, .	3.9	69
15	Current perspective of yellowish-orange pigments from microorganisms- a review. Journal of Cleaner Production, 2018, 180, 168-182.	9.3	68
16	Evaluation of Nitrogenous Substrates Such as Peptones from Fish:A New Method Based on Gompertz Modeling of Microbial Growth. Current Microbiology, 2001, 42, 32-38.	2.2	67
17	Production of carotenoids by Brevibacterium linens : variation among strains, kinetic aspects and HPLC profiles. Journal of Industrial Microbiology and Biotechnology, 2000, 24, 64-70.	3.0	64
18	Current perspective on bacterial pigments: emerging sustainable compounds with coloring and biological properties for the industry – an incisive evaluation. RSC Advances, 2014, 4, 39523.	3.6	63

#	Article	IF	CITATIONS
19	Antioxidant and Free Radical Scavenging Properties of Marennine, a Blue-Green Polyphenolic Pigment from the DiatomHaslea ostrearia(Gaillon/Bory) Simonsen Responsible for the Natural Greening of Cultured Oysters. Journal of Agricultural and Food Chemistry, 2008, 56, 6278-6286.	5.2	61
20	Production and New Extraction Method of Polyketide Red Pigments Produced by Ascomycetous Fungi from Terrestrial and Marine Habitats. Journal of Fungi (Basel, Switzerland), 2017, 3, 34.	3.5	61
21	Production, Identification, and Toxicity of (gamma)-Decalactone and 4-Hydroxydecanoic Acid from Sporidiobolus spp. Applied and Environmental Microbiology, 1996, 62, 2826-2831.	3.1	56
22	Effect of sucrose on the anthocyanin and antioxidant capacity of mulberry extract during high temperature heating. Food Research International, 2005, 38, 1059-1065.	6.2	54
23	Comparison of hydrodistillation methods for the deodorization of turmeric. Food Research International, 2005, 38, 1087-1096.	6.2	53
24	Partial characterization of the pigments produced by the marine-derived fungus Talaromyces albobiverticillius 30548. Towards a new fungal red colorant for the food industry. Journal of Food Composition and Analysis, 2018, 67, 38-47.	3.9	53
25	Biotechnological approaches for the production of natural colorants by Talaromyces/Penicillium: A review. Biotechnology Advances, 2020, 43, 107601.	11.7	53
26	Spectrocolorimetry in the CIE L*a*b* color space as useful tool for monitoring the ripening process and the quality of PDO red-smear soft cheeses. Food Research International, 2005, 38, 919-924.	6.2	50
27	Anthraquinones, the Dr Jekyll and Mr Hyde of the food pigment family. Food Research International, 2014, 65, 132-136.	6.2	42
28	Fungal Endophytes: A Potential Source of Antibacterial Compounds. Journal of Fungi (Basel,) Tj ETQq0 0 0 rgB1	「/Overlock 3.5	10 Jf 50 382
29	An Overview on Industrial and Medical Applications of Bio-Pigments Synthesized by Marine Bacteria. Microorganisms, 2021, 9, 11.	3.6	40
30	Bacteria belonging to the extremely versatile genus Arthrobacter as novel source of natural pigments with extended hue range. Food Research International, 2014, 65, 156-162.	6.2	38
31	Antioxidant and enzymatic responses to oxidative stress induced by cold temperature storage and ripening in mango (Mangifera indica L. cv. â€~Cogshall') in relation to carotenoid content. Journal of Plant Physiology, 2018, 224-225, 75-85.	3.5	38
32	Ecological and Biotechnological Aspects of Pigmented Microbes: A Way Forward in Development of Food and Pharmaceutical Grade Pigments. Microorganisms, 2021, 9, 637.	3.6	38
33	The last step in the biosynthesis of aryl carotenoids in the cheese ripening bacteria Brevibacterium linens ATCC 9175 (Brevibacterium aurantiacum sp. nov.) involves a cytochrome P450-dependent monooxygenase. Food Research International, 2005, 38, 967-973.	6.2	37
34	Microbial Pigments From Bacteria, Yeasts, Fungi, and Microalgae for the Food and Feed Industries. , 2018, , 113-132.		37
35	In Situ Detoxification of the Fermentation Medium during Î ³ -Decalactone Production with the Yeast Sporidiobolus salmonicolor. Biotechnology Progress, 1999, 15, 135-139.	2.6	36
36	Preparation and testing of Sardinella protein hydrolysates as nitrogen source for extracellular lipase production by Rhizopus oryzae. World Journal of Microbiology and Biotechnology, 2005, 21, 33-38.	3.6	36

#	Article	IF	CITATIONS
37	Microbial pigments as an alternative to synthetic dyes and food additives: a brief review of recent studies. Bioprocess and Biosystems Engineering, 2022, 45, 1-12.	3.4	35
38	Metabolism of ricinoleic acid into γ-decalactone: β-oxidation and long chain acyl intermediates of ricinoleic acid in the genusSporidiobolussp FEMS Microbiology Letters, 2000, 188, 69-74.	1.8	34
39	Biodiversity of Pigmented Fungi Isolated from Marine Environment in La Réunion Island, Indian Ocean: New Resources for Colored Metabolites. Journal of Fungi (Basel, Switzerland), 2017, 3, 36.	3.5	32
40	Applications of Prodigiosin Extracted from Marine Red Pigmented Bacteria Zooshikella sp. and Actinomycete Streptomyces sp Microorganisms, 2020, 8, 556.	3.6	32
41	Assessment of the Coloring Strength of Brevibacterium linens Strains: Spectrocolorimetry Versus Total Carotenoid Extraction/Quantification. Journal of Dairy Science, 2001, 84, 354-360.	3.4	31
42	Separation of glyceride positional isomers by silver ion chromatography. Journal of Chromatography A, 2001, 923, 53-57.	3.7	31
43	Rhizosphere Signaling: Insights into Plant–Rhizomicrobiome Interactions for Sustainable Agronomy. Microorganisms, 2022, 10, 899.	3.6	31
44	Production of γ-decalactone and 4-hydroxy-decanoic acid in the genus Sporidiobolus. Journal of Bioscience and Bioengineering, 1998, 86, 169-173.	0.9	30
45	Characterisation of the C50 carotenoids produced by strains of the cheese-ripening bacterium Arthrobacter arilaitensis. International Dairy Journal, 2016, 55, 10-16.	3.0	30
46	Production of pigments from the tropical marine-derived fungi Talaromyces albobiverticillius : New resources for natural red-colored metabolites. Journal of Food Composition and Analysis, 2018, 70, 35-48.	3.9	30
47	Isolation of two novel purple naphthoquinone pigments concomitant with the bioactive red bikaverin and derivates thereof produced by <i>Fusarium oxysporum</i> . Biotechnology Progress, 2019, 35, e2738.	2.6	30
48	Metabolism of ricinoleic acid into $\hat{1}^3$ -decalactone: $\hat{1}^2$ -oxidation and long chain acyl intermediates of ricinoleic acid in the genus Sporidiobolus sp FEMS Microbiology Letters, 2000, 188, 69-74.	1.8	29
49	Waterâ€soluble red pigments from <i>Isaria farinosa</i> and structural characterization of the main colored component. Journal of Basic Microbiology, 2010, 50, 581-590.	3.3	29
50	Salinity and Temperature Influence Growth and Pigment Production in the Marine-Derived Fungal Strain Talaromyces albobiverticillius 30548. Microorganisms, 2019, 7, 10.	3.6	29
51	Production of Bio-Based Pigments from Food Processing Industry By-Products (Apple, Pomegranate,) Tj ETQq1 2020, 6, 240.	1 0.784314 3.5	rgBT /Overlo 29
52	Marine Natural Products from Tunicates and Their Associated Microbes. Marine Drugs, 2021, 19, 308.	4.6	29
53	First pigment fingerprints from the rind of French PDO red-smear ripened soft cheeses Epoisses, Mont d'Or and Maroilles. Innovative Food Science and Emerging Technologies, 2007, 8, 373-378.	5.6	28
54	Current and Potential Natural Pigments From Microorganisms (Bacteria, Yeasts, Fungi, Microalgae). , 2016, , 337-354.		28

#	Article	IF	CITATIONS
55	Pigments and Colorants from Filamentous Fungi. , 2017, , 499-568.		28
56	Antioxidant and enzymatic responses to oxidative stress induced by pre-harvest water supply reduction and ripening on mango (Mangifera indica L. cv. â€~Cogshall') in relation to carotenoid content. Journal of Plant Physiology, 2015, 184, 68-78.	3.5	27
57	Advances and trends in biotechnological production of natural astaxanthin by <i>Phaffia rhodozyma</i> yeast. Critical Reviews in Food Science and Nutrition, 2023, 63, 1862-1876.	10.3	27
58	Safety Evaluation of Fungal Pigments for Food Applications. Journal of Fungi (Basel, Switzerland), 2021, 7, 692.	3.5	26
59	Carotenoid-derived aroma compounds detected and identified in brines and speciality sea salts (fleur) Tj ETQq1 Analysis, 2011, 24, 801-810.	l 0.784314 3.9	∙rgBT /Overl 25
60	Determination of speciality food salt origin by using 16S rDNA fingerprinting of bacterial communities by PCR–DGGE: An application on marine salts produced in solar salterns from the French Atlantic Ocean. Food Control, 2013, 32, 644-649.	5.5	25
61	Fatty acid accumulation in the yeast Sporidiobolus salmonicolor during batch production of Î ³ -decalactone. FEMS Microbiology Letters, 1997, 149, 17-24.	1.8	24
62	First isolation of <i>Brevibacterium</i> sp. pigments in the rind of an industrial redâ€smearâ€ripened soft cheese. International Journal of Dairy Technology, 2015, 68, 144-147.	2.8	24
63	Trapping of Â-Decalactone by Adsorption on Hydrophobic Sorbents : Application to the bioconversion of methyl ricinoleate by the yeast Sporidiobolus salmonicolor. Biotechnology Letters, 1998, 12, 109-113.	0.5	21
64	Production of carotenoids by <i>Arthrobacter arilaitensis</i> strains isolated from smear-ripened cheeses. FEMS Microbiology Letters, 2014, 360, 174-181.	1.8	21
65	Statistical Optimization of the Physico-Chemical Parameters for Pigment Production in Submerged Fermentation of Talaromyces albobiverticillius 30548. Microorganisms, 2020, 8, 711.	3.6	21
66	Medium design from corncob hydrolyzate for pigment production by Talaromyces atroroseus GH2: Kinetics modeling and pigments characterization. Biochemical Engineering Journal, 2020, 161, 107698.	3.6	21
67	Microorganisms Associated with the Marine Sponge Scopalina hapalia: A Reservoir of Bioactive Molecules to Slow Down the Aging Process. Microorganisms, 2020, 8, 1262.	3.6	19
68	Chirality of the ?-lactones formed byFusarium poae INRA 45. Chirality, 1993, 5, 379-384.	2.6	18
69	Biogeography at the limits of life: Do extremophilic microbial communities show biogeographical regionalization?. Global Ecology and Biogeography, 2017, 26, 1435-1446.	5.8	18
70	HPLC analysis of the pigments produced by the microflora isolated from the â€~Protected Designation of Origin' French red-smear soft cheeses Munster, Epoisses, Reblochon and Livarot. Food Research International, 2005, 38, 855-860.	6.2	17
71	New Syntheses of Retinal and Its Acyclic Analogγ-Retinal by an Extended Aldol Reaction with a C6 Building Block That Incorporates a C5 Unit after Decarboxylation. A Formal Route to Lycopene andβ-Carotene. Helvetica Chimica Acta, 2007, 90, 512-520.	1.6	16
72	Chirality of the ?-lactones produced bySporidiobolus salmonicolor grown in two different media. , 1997, 9, 667-671.		15

#	Article	IF	CITATIONS
73	Extraction and Application of Pigment from Serratia marcescens SB08, an Insect Enteric Gut Bacterium, for Textile Dyeing. Textiles, 2021, 1, 21-36.	4.1	15
74	New Synthesis of Natural Carotene Isorenieratene (φ,φ-Carotene) and its 3,3′-Dimethoxy Analogue. Helvetica Chimica Acta, 2003, 86, 3314-3319.	1.6	14
75	Alternative Extraction and Characterization of Nitrogen-Containing Azaphilone Red Pigments and Ergosterol Derivatives from the Marine-Derived Fungal Talaromyces sp. 30570 Strain with Industrial Relevance. Microorganisms, 2020, 8, 1920.	3.6	14
76	Characterization of Brevibacterium linens pigmentation using spectrocolorimetry. International Journal of Food Microbiology, 2000, 57, 201-210.	4.7	13
77	Evaluation of regioselectivity of lipases based on synthesis reaction conducted with propyl alcohol, isopropyl alcohol and propylene glycol. Journal of Molecular Catalysis B: Enzymatic, 2001, 11, 445-453.	1.8	13
78	Actual evapotranspiration and crop coefficients for five species of three-year-old bamboo plants under a tropical climate. Agricultural Water Management, 2014, 137, 15-22.	5.6	13
79	OVAT Analysis and Response Surface Methodology Based on Nutrient Sources for Optimization of Pigment Production in the Marine-Derived Fungus Talaromyces albobiverticillius 30548 Submerged Fermentation. Marine Drugs, 2021, 19, 248.	4.6	13
80	Microbial and Microalgal Carotenoids as Colourants and Supplements. , 2009, , 83-98.		13
81	Microbial Secondary Metabolism and Biotechnology. Microorganisms, 2022, 10, 123.	3.6	13
82	Aqueous Two-Phase System Extraction of Polyketide-Based Fungal Pigments Using Ammonium- or Imidazolium-Based Ionic Liquids for Detection Purpose: A Case Study. Journal of Fungi (Basel,) Tj ETQq0 0 0 rgB	3T /Oxerlocl	k 1012f 50 377
83	Marine Bacteria Is the Cell Factory to Produce Bioactive Pigments: A Prospective Pigment Source in the Ocean. Frontiers in Sustainable Food Systems, 2020, 4, .	3.9	11
84	A New Biomimetic-Like Aromatization of the Cyclic End Groups of Terpenoids with Stereospecific Migration of One of the Methyl Groups: A Convenient Route to Isorenieratene (φ,φ-Carotene). European Journal of Organic Chemistry, 2007, 2007, 711-715.	2.4	10
85	Effects of High Nutrient Supply on the Growth of Seven Bamboo Species. International Journal of Phytoremediation, 2014, 16, 1042-1057.	3.1	10
86	Arthrobacter arilaitensis strains isolated from ripened cheeses: Characterization of their pigmentation using spectrocolorimetry. Food Research International, 2014, 65, 184-192.	6.2	10
87	Putative metabolic pathway for the bioproduction of bikaverin and intermediates thereof in the wild Fusarium oxysporum LCP531 strain. AMB Express, 2019, 9, 186.	3.0	10
88	Carotenoids from the ripening bacterium Brevibacterium linens impart color to the rind of the French cheese, Fourme de Montbrison (PDO). Natural Product Research, 2020, 34, 10-15.	1.8	10
89	Characterization of Talaromyces purpureogenus strain F extrolites and development of production medium for extracellular pigments enriched with antioxidant properties. Food and Bioproducts Processing, 2020, 124, 143-158.	3.6	10
90	Fungi and Fungal Metabolites for the Improvement of Human and Animal Nutrition and Health. Journal of Fungi (Basel, Switzerland), 2021, 7, 274.	3.5	10

#	Article	IF	CITATIONS
91	Antioxidant, Antibacterial and Dyeing Potential of Crude Pigment Extract of Gonatophragmium triuniae and Its Chemical Characterization. Molecules, 2022, 27, 393.	3.8	10
92	Pigments, Microbial â~†. , 2017, , 579-579.		9
93	Isolation and Optimization of Culture Conditions of Thraustochytrium kinnei for Biomass Production, Nanoparticle Synthesis, Antioxidant and Antimicrobial Activities. Journal of Marine Science and Engineering, 2021, 9, 678.	2.6	9
94	Lignocellulosic substrates as starting materials for the production of bioactive biopigments. Food Chemistry: X, 2022, 13, 100223.	4.3	9
95	The Influence of pH, NaCl, and the Deacidifying Yeasts Debaryomyces hansenii and Kluyveromyces marxianus on the Production of Pigments by the Cheese-Ripening Bacteria Arthrobacter arilaitensis. Foods, 2018, 7, 190.	4.3	8
96	Pigments and Colorants from Filamentous Fungi. , 2015, , 1-70.		8
97	Thraustochytrids of Mangrove Habitats from Andaman Islands: Species Diversity, PUFA Profiles and Biotechnological Potential. Marine Drugs, 2021, 19, 571.	4.6	8
98	Enzymic Solubilisation of Proteins from Tropical Tuna Using Alcalase and Some Biological Properties of the Hydrolysates. Focus on Biotechnology, 2001, , 39-50.	0.4	7
99	Could the reliability of classical descriptors of fruit quality be influenced by irrigation and cold storage? The case of mango, a climacteric fruit. Journal of the Science of Food and Agriculture, 2019, 99, 3792-3802.	3.5	7
100	Editorial: Microbial Biotechnology Providing Bio-based Components for the Food Industry. Frontiers in Microbiology, 2019, 10, 2843.	3.5	5
101	Bamboo Plantations for Phytoremediation of Pig Slurry: Plant Response and Nutrient Uptake. Plants, 2020, 9, 522.	3.5	5
102	Identification of Red Pigments Produced by Cheese-Ripening Bacterial Strains of Glutamicibacter arilaitensis Using HPLC. Dairy, 2021, 2, 396-410.	2.0	5
103	Complete Genome Analysis of Undecylprodigiosin Pigment Biosynthesizing Marine Streptomyces Species Displaying Potential Bioactive Applications. Microorganisms, 2021, 9, 2249.	3.6	5
104	New Metabolites from the Marine Sponge Scopalina hapalia Collected in Mayotte Lagoon. Marine Drugs, 2022, 20, 186.	4.6	5
105	Editorial: Sustainable Production of Bioactive Pigments. Frontiers in Sustainable Food Systems, 2021, 5, .	3.9	4
106	Antibacterial metabolites from an unexplored strain of marine fungi <i>Emericellopsis minima</i> and determination of the probable mode of action against <i>Staphylococcus aureus</i> and methicillinâ€resistant <i>S. aureus</i> . Biotechnology and Applied Biochemistry, 2023, 70, 120-129.	3.1	4
107	Structure and biosynthesis of carotenoids produced by a novel Planococcus sp. isolated from South Africa. Microbial Cell Factories, 2022, 21, 43.	4.0	4
108	Antioxidant and Anti-Colorectal Cancer Properties in Methanolic Extract of Mangrove-Derived Schizochytrium sp Journal of Marine Science and Engineering, 2022, 10, 431.	2.6	4

#	Article	IF	CITATIONS
109	Third International Congress on Pigments in Food. Food Research International, 2005, 38, 831-832.	6.2	3
110	Novel Ï€ _{2s} +Ï€ _{2a} Electrocyclization of Triethylenicâ€Malonic Acids Exemplified for a Oneâ€Pot Synthesis of New γâ€Đilactones <i>cis</i> â€Fused with a Cyclopentene. Journal of Heterocyclic Chemistry, 2016, 53, 1017-1021.	2.6	3
111	Chemical characterization of unconventional palm oils from <i>Hyophorbe indica</i> and two other endemic Arecaceae species from Reunion Island. Natural Product Research, 2020, 34, 93-101.	1.8	3
112	Synthesis of Pigment-Mediated Nanoparticles and Its Pharmacological Applications. Nanotechnology in the Life Sciences, 2020, , 331-346.	0.6	3
113	Microbial calcite induction: a magic that fortifies and heals concrete. International Journal of Environmental Science and Technology, 2023, 20, 1113-1134.	3.5	3
114	Synthesis of a New C-15 Phosphorus Ylide Used for the Preparation of Some β-End-Group Retinoid Derivatives. Synthetic Communications, 2010, 41, 184-190.	2.1	2
115	Base-Induced Decarboxylation of Polyunsaturatedα-Cyano Acids Derived from Malonic Acid: Synthesis of Sesquiterpene Nitriles and Aldehydes withβ-,φ-, andÏ^-End Groups. Helvetica Chimica Acta, 2013, 96, 259-265.	1.6	2
116	Twoâ€step Synthesis of New Î³â€Łactones via Cyclization of 7â€Chloroâ€2â€(methoxycarbonyl)â€4â€6â€dimethyloctaâ€(2 <i>E</i> ,4 <i>E</i> ,6 <i>E</i>)â€trienoic acid. Jour Heterocyclic Chemistry, 2016, 53, 1439-1442.	n al.o f	2
117	Fungal Pigments: Deep into the Rainbow of Colorful Fungi. Journal of Fungi (Basel, Switzerland), 2017, 3, 45.	3.5	2
118	Phycobiliproteins as Food Additives. , 2020, , 559-573.		2
119	Production of Biocolors. , 2013, , 417-445.		1
120	Editorial: Recent Advances in Microbial Biotechnology for the Food Industry. Frontiers in Microbiology, 2021, 12, 746636.	3.5	1
121	Multigene Phylogeny, Beauvericin Production and Bioactive Potential of Fusarium Strains Isolated in India. Journal of Fungi (Basel, Switzerland), 2022, 8, 662.	3.5	1
122	Mass Spectrometry of Food Pigments. , 2022, , 119-135.		0