Vera Jencova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1145076/publications.pdf Version: 2024-02-01

VERA LENCOVA

#	Article	IF	CITATIONS
1	AC electrospinning: impact of high voltage and solvent on the electrospinnability and productivity of polycaprolactone electrospun nanofibrous scaffolds. Materials Today Chemistry, 2022, 26, 101025.	1.7	30
2	Comparison and characterization of different polyester nano/micro fibres for use in tissue engineering applications. Journal of Industrial Textiles, 2021, 50, 870-890.	1.1	13
3	Bacterial Biofilms on Polyamide Nanofibers: Factors Influencing Biofilm Formation and Evaluation. ACS Applied Materials & Interfaces, 2021, 13, 2277-2288.	4.0	28
4	Benefits of Polyamide Nanofibrous Materials: Antibacterial Activity and Retention Ability for Staphylococcus Aureus. Nanomaterials, 2021, 11, 480.	1.9	6
5	The Effect of a Polyester Nanofibrous Membrane with a Fibrin-Platelet Lysate Coating on Keratinocytes and Endothelial Cells in a Co-Culture System. Nanomaterials, 2021, 11, 457.	1.9	6
6	The Effect of the Controlled Release of Platelet Lysate from PVA Nanomats on Keratinocytes, Endothelial Cells and Fibroblasts. Nanomaterials, 2021, 11, 995.	1.9	5
7	Novel lipophosphonoxin-loaded polycaprolactone electrospun nanofiber dressing reduces Staphylococcus aureus induced wound infection in mice. Scientific Reports, 2021, 11, 17688.	1.6	13
8	Degradation of polycaprolactone electrospun materials - methods of analysis. , 2021, , .		0
9	Drawn aligned polymer microfibres for tissue engineering. Journal of Industrial Textiles, 2020, 50, 263-277.	1.1	3
10	Novel double-layered planar scaffold combining electrospun PCL fibers and PVA hydrogels with high shape integrity and water stability. Materials Letters, 2020, 263, 127281.	1.3	23
11	Large-scale electrospinning of poly (vinylalcohol) nanofibers incorporated with platelet-derived growth factors. EXPRESS Polymer Letters, 2020, 14, 987-1000.	1.1	12
12	The assessment of electrospun scaffolds fabricated from polycaprolactone with the addition of L-arginine. Biomedical Physics and Engineering Express, 2020, 6, 025012.	0.6	5
13	Novel chapter in hybrid materials: One-pot synthesis of purely organosilane fibers. Polymer, 2020, 190, 122234.	1.8	5
14	<p>A two-layer skin construct consisting of a collagen hydrogel reinforced by a fibrin-coated polylactide nanofibrous membrane</p> . International Journal of Nanomedicine, 2019, Volume 14, 5033-5050.	3.3	30
15	Cyclodextrin-Polypyrrole Coatings of Scaffolds for Tissue Engineering. Polymers, 2019, 11, 459.	2.0	9
16	Comprehensive assessment of electrospun scaffolds hemocompatibility. Materials Science and Engineering C, 2018, 82, 330-335.	3.8	48
17	The combination of nanofibrous and microfibrous materials for enhancement of cell infiltration and <i>in vivo</i> bone tissue formation. Biomedical Materials (Bristol), 2018, 13, 025004.	1.7	21
18	Electrospun vascular grafts fabricated from poly(<i>L</i> -lactide-co- <i>ε</i> -caprolactone) used as a bypass for the rabbit carotid artery. Biomedical Materials (Bristol), 2018, 13, 065009.	1.7	13

Vera Jencova

#	Article	lF	CITATIONS
19	The effect of ethylene oxide sterilization on electrospun vascular grafts made from biodegradable polyesters. Materials Science and Engineering C, 2018, 92, 132-142.	3.8	45
20	The combination of meltblown technology and electrospinning – The influence of the ratio of micro and nanofibers on cell viability. Materials Letters, 2016, 173, 153-157.	1.3	17
21	The combination of meltblown and electrospinning for bone tissue engineering. Materials Letters, 2015, 143, 172-176.	1.3	35
22	Nucleotide sequence, organization and characterization of the (halo)aromatic acid catabolic plasmid pA81 from Achromobacter xylosoxidans A8. Research in Microbiology, 2008, 159, 118-127.	1.0	34
23	Integrase of Mason-Pfizer monkey virus. FEBS Journal, 2004, 272, 203-216.	2.2	14
24	Chlorocatechol catabolic enzymes from Achromobacter xylosoxidans A8. International Biodeterioration and Biodegradation, 2004, 54, 175-181.	1.9	24
25	Nanofibrous Scaffolds for Skin Tissue Engineering and Wound Healing Based on Synthetic Polymers. , 0, , .		11
26	Nanofibrous Scaffolds for Skin Tissue Engineering and Wound Healing Based on Nature-Derived Polymers. , 0, , .		2