Bernd Wetzel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11449613/publications.pdf Version: 2024-02-01

REDND WETZEL

#	Article	IF	CITATIONS
1	Temperature-rate induced polymerization and phase separation of block copolymer toughened polymer composites. Composites Science and Technology, 2022, 230, 109329.	7.8	4
2	Low velocity impact resistance of thin and toughened carbon fibre reinforced epoxy. Composites Science and Technology, 2022, 230, 109362.	7.8	5
3	<i>In situ</i> functionalisation of organomineral hybrid resins for tough basalt fibre reinforced plastics. Plastics, Rubber and Composites, 2021, 50, 105-115.	2.0	1
4	Mechanical properties and fracture behavior of highâ€performance epoxy nanocomposites modified with block polymer and core–shell rubber particles. Journal of Applied Polymer Science, 2020, 137, 48471.	2.6	27
5	Effect of Different Types of Block Copolymers on Morphology, Mechanical Properties, and Fracture Mechanisms of Bisphenol-F Based Epoxy System. Journal of Composites Science, 2019, 3, 68.	3.0	22
6	Flexural and fracture mechanical properties of in situ particulate reinforced organomineral hybrid resins modified by organofunctional silanes. Composites Science and Technology, 2019, 174, 169-175.	7.8	8
7	Impact of Aggressive Media on the Interlaminar Shear Strength of Innovative Class Fiber Reinforced Polyurea/Polysilicate Hybrid Resins. Procedia Structural Integrity, 2018, 13, 143-148.	0.8	2
8	Tensile Properties, Fracture Mechanics Properties and Toughening Mechanisms of Epoxy Systems Modified with Soft Block Copolymers, Rigid TiO2 Nanoparticles and Their Hybrids. Journal of Composites Science, 2018, 2, 72.	3.0	28
9	The effect of block copolymer and core-shell rubber hybrid toughening on morphology and fracture of epoxy-based fibre reinforced composites. Engineering Fracture Mechanics, 2018, 203, 81-101.	4.3	54
10	Fatigue crack propagation in triblock copolymer toughened epoxy nanocomposites. Polymer Engineering and Science, 2017, 57, 579-587.	3.1	23
11	Distinct tribological mechanisms of silica nanoparticles in epoxy composites reinforced with carbon nanotubes, carbon fibers and glass fibers. Tribology International, 2016, 104, 225-236.	5.9	56
12	The role of surface topography in the evolving microstructure and functionality of tribofilms of an epoxy-based nanocomposite. Wear, 2016, 364-365, 48-56.	3.1	13
13	Toughening and Mechanical Properties of Epoxy Modified with Block Co-polymers and MWCNTs. Procedia Structural Integrity, 2016, 2, 104-111.	0.8	23
14	Fatigue crack propagation in self-assembling nanocomposites. AIP Conference Proceedings, 2016, , .	0.4	0
15	Tribological Behaviors of Carbon Fiber Reinforced Epoxy Composites Under PAO Lubrication Conditions. Tribology Letters, 2016, 62, 1.	2.6	18
16	Modeling of the stress–strain behavior of an epoxy-based nanocomposite filled with silica nanoparticles. Materials and Design, 2016, 89, 950-956.	7.0	14
17	Mesoscale modeling of the mechanical and tribological behavior of a polymer matrix composite based on epoxy and 6vol.% silica nanoparticles. Computational Materials Science, 2015, 110, 204-214.	3.0	19
18	Thermo-molded self-healing thermoplastics containing multilayer microreactors. Journal of Materials Chemistry A, 2013, 1, 7191.	10.3	51

Bernd Wetzel

#	Article	IF	CITATIONS
19	Epoxy nanocomposites – fracture and toughening mechanisms. Engineering Fracture Mechanics, 2006, 73, 2375-2398.	4.3	711
20	Reinforcement of Thermosetting Polymers by the Incorporation of Micro- and Nanoparticles. , 2005, , 45-62.		18
2:	Finite Element Simulation of the Fiber–Matrix Debonding in Polymer Composites Produced by a Sliding Indentor: Part I – Normally Oriented Fibers. Journal of Composite Materials, 2004, 38, 1583-1606.	2.4	14
2:	Finite Element Simulation of the Fiber– Matrix Debonding in Polymer Composites Produced by a Sliding Indentor: Part II – Parallel and Anti-Parallel Fiber Orientation. Journal of Composite Materials, 2004, 38, 1607-1618.	2.4	8
23	Sliding wear behavior of epoxy containing nano-Al2O3 particles with different pretreatments. Wear, 2004, 256, 1072-1081.	3.1	162
24	Surface Grafting of Nano-SiC with Glycidyl Methacrylate in Emulsion and Its Effect on the Tribological Performance of Epoxy Composites. , 2004, , 571-576.		0
2	Epoxy nanocomposites with high mechanical and tribological performance. Composites Science and Technology, 2003, 63, 2055-2067.	7.8	690
20	Graft polymerization onto inorganic nanoparticles and its effect on tribological performance improvement of polymer composites. Tribology International, 2003, 36, 697-707.	5.9	85
2'	Friction and wear of low nanometer Si3N4 filled epoxy composites. Wear, 2003, 254, 784-796.	3.1	202
28	³ Improvement of Tribological Performance of Epoxy by the Addition of Irradiation Grafted Nano-Inorganic Particles. Macromolecular Materials and Engineering, 2002, 287, 111-115.	3.6	120
29	Impact and wear resistance of polymer nanocomposites at low filler content. Polymer Engineering and Science, 2002, 42, 1919-1927.	3.1	226
30	Effect of particle surface treatment on the tribological performance of epoxy based nanocomposites. Wear, 2002, 253, 1086-1093.	3.1	226
3	Microstructure and tribological behavior of polymeric nanocomposites. Industrial Lubrication and Tribology, 2001, 53, 72-77.	1.3	139
3:	Atomic force microscopy study on structure and properties of irradiation grafted silica particles in polypropylene-based nanocomposites. Journal of Applied Polymer Science, 2001, 80, 2218-2227.	2.6	69
3	Toughening of Glass Fiber Reinforced Unsaturated Polyester Composites by Core-Shell Particles. Key Engineering Materials, 0, 742, 74-81.	0.4	4
34	Fiber/Matrix Adhesion in Glass Fiber Reinforced Inorganic-Organic Polyurea/Polysilicate Resins. Key Engineering Materials, 0, 742, 9-16.	0.4	4