
Jos Domen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11448111/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hematopoietic Stem Cells: Isolation, Characterization and Applications. , 2019, , .		0
2	Minimally Invasive Transplantation of Primary Human Hepatocyte Inserts that Facilitate Vascularization. Transplantation, 2018, 102, 1413-1414.	1.0	1
3	Physiology of Stem Cells. , 2017, , 711-725.		Ο
4	Cryopreserved Ex Vivo-Expanded Allogeneic Myeloid Progenitor Cell Product Protects Neutropenic Mice from a Lethal Fungal Infection. Cell Transplantation, 2016, 25, 17-33.	2.5	3
5	Renal and Hematological Effects of CLCF-1, a B-Cell-Stimulating Cytokine of the IL-6 Family. Journal of Immunology Research, 2015, 2015, 1-11.	2.2	62
6	Rapid tolerance induction by hematopoietic progenitor cells in the absence of donor-matched lymphoid cells Transplant Immunology, 2014, 31, 112-118.	1.2	2
7	Emerging uses for pediatric hematopoietic stem cells. Pediatric Research, 2012, 71, 411-417.	2.3	17
8	Role of mesenchymal stem cell therapy in Crohn's disease. Pediatric Research, 2012, 71, 445-451.	2.3	91
9	Tolerance induction by hematopoietic cell transplantation: Combined use of stem cells and progenitor cells. Journal of Heart and Lung Transplantation, 2011, 30, 507-514.	0.6	6
10	Renal failure causes early death of bcl-2 deficient mice. Mechanisms of Ageing and Development, 2006, 127, 600-609.	4.6	11
11	Interleukin-4 elicits apoptosis of developing mast cells via a Stat6-dependent mitochondrial pathway. Experimental Hematology, 2004, 32, 52-59.	0.4	27
12	Costimulation with interleukin-4 and interleukin-10 induces mast cell apoptosis and cell-cycle arrest: the role of p53 and the mitochondrion. Experimental Hematology, 2004, 32, 1137-1145.	0.4	35
13	Hematopoietic stem cell dose correlates with the speed of immune reconstitution after stem cell transplantation. Blood, 2004, 103, 4344-4352.	1.4	68
14	Hematopoietic stem cells and other hematopoietic cells show broad resistance to chemotherapeutic agents in vivo when overexpressing bcl-2. Experimental Hematology, 2003, 31, 631-639.	0.4	35
15	A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature, 2003, 423, 409-414.	27.8	1,981
16	Enforced Expression of Bcl-2 Restores the Number of NK Cells, But Does Not Rescue the Impaired Development of NKT Cells or Intraepithelial Lymphocytes, in IL-2/IL-15 Receptor β-Chain-Deficient Mice. Journal of Immunology, 2002, 169, 4153-4160.	0.8	50
17	The role of apoptosis in regulating hematopoietic stem cell numbers. , 2001, 6, 239-252.		32
18	Catecholamines in murine bone marrow derived mast cells. Journal of Neuroimmunology, 2001, 119, 231-238.	2.3	54

Jos Domen

#	Article	IF	CITATIONS
19	The Fetal Liver Counterpart of Adult Common Lymphoid Progenitors Gives Rise to All Lymphoid Lineages, CD45+CD4+CD3â°' Cells, As Well As Macrophages. Journal of Immunology, 2001, 166, 6593-6601.	0.8	234
20	The Role of Apoptosis in Regulating Hematopoiesis and Hematopoietic Stem Cells. Immunologic Research, 2000, 22, 83-94.	2.9	40
21	The Role of Apoptosis in the Regulation of Hematopoietic Stem Cells. Journal of Experimental Medicine, 2000, 191, 253-264.	8.5	300
22	Hematopoietic Stem Cells Need Two Signals to Prevent Apoptosis; Bcl-2 Can Provide One of These, Kitl/C-KIT Signaling the Other. Journal of Experimental Medicine, 2000, 192, 1707-1718.	8.5	200
23	Self-renewal, differentiation or death: regulation and manipulation of hematopoietic stem cell fate. Trends in Molecular Medicine, 1999, 5, 201-208.	2.6	162
24	Induction of Germline Transcription in the TCR \hat{I}^3 Locus by Stat5. Immunity, 1999, 11, 213-223.	14.3	115
25	CD8+TCR+ and CD8+TCRâ^' Cells in Whole Bone Marrow Facilitate the Engraftment of Hematopoietic Stem Cells across Allogeneic Barriers. Immunity, 1999, 11, 579-590.	14.3	168
26	Growth stimulation of primary B cell precursors by the anti-phosphatase Sbf1. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 9471-9476.	7.1	32
27	Systemic Overexpression of BCL-2 in the Hematopoietic System Protects Transgenic Mice From the Consequences of Lethal Irradiation. Blood, 1998, 91, 2272-2282.	1.4	269
28	Systemic Overexpression of BCL-2 in the Hematopoietic System Protects Transgenic Mice From the Consequences of Lethal Irradiation. Blood, 1998, 91, 2272-2282.	1.4	23
29	Bcl-2 Rescues T Lymphopoiesis, but Not B or NK Cell Development, in Common γ Chain–Deficient Mice. Immunity, 1997, 7, 155-162.	14.3	210
30	From stem cells to lymphocytes; biology and transplantation. Immunological Reviews, 1997, 157, 13-40.	6.0	64
31	Bcl-2 reduces lymphomagenesis in ΔV-TCRÎ ² transgenic mice. Oncogene, 1997, 14, 2497-2501.	5.9	9
32	Pim-2 transgene induces lymphoid tumors, exhibiting potent synergy with c-myc. Oncogene, 1997, 15, 1133-1141.	5.9	145
33	Pim1., 1995, , 361-363.		0
34	In vivoanalysis of Pim-1 deficiency. Nucleic Acids Research, 1993, 21, 4750-4755.	14.5	116
35	Predisposition to lymphomagenesis in pim-1 transgenic mice: Cooperation with c-myc and N-myc in murine leukemia virus-induced tumors. Cell, 1989, 56, 673-682.	28.9	501
36	The primary structure of the putative oncogene pim-1 shows extensive homology with protein kinases. Cell, 1986, 46, 603-611.	28.9	212