Matthieu Stettler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11447992/publications.pdf

Version: 2024-02-01

29 papers	1,291 citations	279798 23 h-index	29 g-index
30	30	30	993
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Cell culture process metabolomics together with multivariate data analysis tools opens new routes for bioprocess development and glycosylation prediction. Biotechnology Progress, 2020, 36, e3012.	2.6	23
2	Experimental and CFD physical characterization of animal cell bioreactors: From micro- to production scale. Biochemical Engineering Journal, 2018, 131, 84-94.	3.6	73
3	Proteomic analysis of micro-scale bioreactors as scale-down model for a mAb producing CHO industrial fed-batch platform. Journal of Biotechnology, 2018, 279, 27-36.	3.8	18
4	Intensification of large-scale cell culture processes. Current Opinion in Chemical Engineering, 2018, 22, 253-257.	7.8	26
5	Modulation and modeling of monoclonal antibody Nâ€linked glycosylation in mammalian cell perfusion reactors. Biotechnology and Bioengineering, 2017, 114, 1978-1990.	3.3	72
6	Glycosylation flux analysis reveals dynamic changes of intracellular glycosylation flux distribution in Chinese hamster ovary fed-batch cultures. Metabolic Engineering, 2017, 43, 9-20.	7.0	42
7	Robust factor selection in early cell culture process development for the production of a biosimilar monoclonal antibody. Biotechnology Progress, 2017, 33, 181-191.	2.6	33
8	Controlling the time evolution of mAb Nâ€linked glycosylation, Part I: Microbioreactor experiments. Biotechnology Progress, 2016, 32, 1123-1134.	2.6	43
9	Controlling the time evolution of mAb Nâ€linked glycosylation â€-Part II: Modelâ€based predictions. Biotechnology Progress, 2016, 32, 1135-1148.	2.6	53
10	Screening and assessment of performance and molecule quality attributes of industrial cell lines across different fed-batch systems. Biotechnology Progress, 2016, 32, 160-170.	2.6	35
11	Pilot-scale verification of maximum tolerable hydrodynamic stress for mammalian cell culture. Applied Microbiology and Biotechnology, 2016, 100, 3489-3498.	3.6	24
12	High-throughput profiling of nucleotides and nucleotide sugars to evaluate their impact on antibody N-glycosylation. Journal of Biotechnology, 2016, 229, 3-12.	3.8	35
13	Fingerprint detection and process prediction by multivariate analysis of fedâ€batch monoclonal antibody cell culture data. Biotechnology Progress, 2015, 31, 1633-1644.	2.6	37
14	Determination of the maximum operating range of hydrodynamic stress in mammalian cell culture. Journal of Biotechnology, 2015, 194, 100-109.	3.8	62
15	Tailoring recombinant protein quality by rational media design. Biotechnology Progress, 2015, 31, 615-629.	2.6	64
16	Tools for High-Throughput Process and Medium Optimization. Methods in Molecular Biology, 2014, 1104, 77-88.	0.9	7
17	Modulation of <scp>mAb</scp> quality attributes using microliter scale fedâ€batch cultures. Biotechnology Progress, 2014, 30, 571-583.	2.6	40
18	High expression of the aspartate–glutamate carrier Aralar1 favors lactate consumption in CHO cell culture. Pharmaceutical Bioprocessing, 2013, 1, 19-27.	0.8	15

#	Article	lF	CITATIONS
19	Lactate metabolism shift in CHO cell culture: the role of mitochondrial oxidative activity. New Biotechnology, 2013, 30, 238-245.	4.4	158
20	A high-throughput media design approach for high performance mammalian fed-batch cultures. MAbs, 2013, 5, 501-511.	5.2	68
21	Will we ever find a perfect medium for mammalian cell culture?. Pharmaceutical Bioprocessing, 2013, 1, 411-413.	0.8	3
22	Effect of hydrocortisone on the production and glycosylation of an Fcâ€fusion protein in CHO cell cultures. Biotechnology Progress, 2012, 28, 803-813.	2.6	32
23	Efficient oxygen transfer by surface aeration in shaken cylindrical containers for mammalian cell cultivation at volumetric scales up to 1000L. Biochemical Engineering Journal, 2009, 45, 41-47.	3.6	62
24	Use of Orbital Shaken Disposable Bioreactors for Mammalian Cell Cultures from the Milliliter-Scale to the 1,000-Liter Scale. Advances in Biochemical Engineering/Biotechnology, 2009, 115, 33-53.	1.1	42
25	Shaken helical track bioreactors: Providing oxygen to high-density cultures of mammalian cells at volumes up to 1000L by surface aeration with air. New Biotechnology, 2008, 25, 68-75.	4.4	36
26	NMR spectroscopy and perfusion of mammalian cells using surface microprobes. Lab on A Chip, 2007, 7, 381.	6.0	16
27	Microfabricated solenoids and Helmholtz coils for NMR spectroscopy of mammalian cells. Lab on A Chip, 2007, 7, 373.	6.0	56
28	Novel Orbital Shake Bioreactors for Transient Production of CHO Derived IgGs. Biotechnology Progress, 2007, 23, 1340-1346.	2.6	70
29	New disposable tubes for rapid and precise biomass assessment for suspension cultures of mammalian cells. Biotechnology and Bioengineering, 2006, 95, 1228-1233.	3.3	46