Lars Folke Olsen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1144749/publications.pdf

Version: 2024-02-01

218677 243625 82 2,223 26 44 citations h-index g-index papers 85 85 85 1333 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Complexity in subnetworks of a peroxidase–oxidase reaction model. Chaos, 2022, 32, .	2.5	4
2	Complexity of a peroxidase–oxidase reaction model. Physical Chemistry Chemical Physics, 2021, 23, 1943-1955.	2.8	12
3	Chaos in the peroxidase–oxidase oscillator. Chaos, 2021, 31, 013119.	2.5	12
4	Oscillations in Yeast Glycolysis. Understanding Complex Systems, 2021, , 211-224.	0.6	O
5	A synthetic RNA-based biosensor for fructose-1,6-bisphosphate that reports glycolytic flux. Cell Chemical Biology, 2021, 28, 1554-1568.e8.	5.2	17
6	Some elements for a history of the dynamical systems theory. Chaos, 2021, 31, 053110.	2.5	12
7	Chaos: From theory to applications for the 80th birthday of Otto E. Rössler. Chaos, 2021, 31, 060402.	2.5	4
8	Glycolytic oscillations and intracellular K+ concentration are strongly coupled in the yeast Saccharomyces cerevisiae. Archives of Biochemistry and Biophysics, 2020, 681, 108257.	3.0	10
9	Functional imaging of a model unicell: Spironucleus vortens as an anaerobic but aerotolerant flagellated protist. Advances in Microbial Physiology, 2020, 76, 41-79.	2.4	3
10	Coupled Response of Membrane Hydration with Oscillating Metabolism in Live Cells: An Alternative Way to Modulate Structural Aspects of Biological Membranes?. Biomolecules, 2019, 9, 687.	4.0	12
11	Delivery of proteins encapsulated in chitosan-tripolyphosphate nanoparticles to human skin melanoma cells. Colloids and Surfaces B: Biointerfaces, 2019, 174, 216-223.	5.0	19
12	Effect of macromolecular crowding on the kinetics of glycolytic enzymes and the behaviour of glycolysis in yeast. Integrative Biology (United Kingdom), 2018, 10, 587-597.	1.3	16
13	Is a constant low-entropy process at the root of glycolytic oscillations?. Journal of Biological Physics, 2018, 44, 419-431.	1.5	19
14	The dynamics of intracellular water constrains glycolytic oscillations in Saccharomyces cerevisiae. Scientific Reports, 2017, 7, 16250.	3.3	20
15	Polymeric pH nanosensor with extended measurement range bearing octaarginine as cell penetrating peptide. IET Nanobiotechnology, 2016, 10, 8-12.	3.8	2
16	Selection of Aptamers for Metabolite Sensing and Construction of Optical Nanosensors. Methods in Molecular Biology, 2016, 1380, 3-19.	0.9	7
17	Tight Coupling of Metabolic Oscillations and Intracellular Water Dynamics in Saccharomyces cerevisiae. PLoS ONE, 2015, 10, e0117308.	2.5	32
18	Experimental and model study of the formation of chitosan-tripolyphosphate-siRNA nanoparticles. Colloid and Polymer Science, 2014, 292, 2869-2880.	2.1	5

#	Article	IF	Citations
19	The Yin and Yang of redox regulation. Redox Report, 2013, 18, 245-252.	4.5	35
20	An experimental study of the regulation of glycolytic oscillations in yeast. FEBS Journal, 2013, 280, 6033-6044.	4.7	18
21	Measurements of intracellularATP provide new insight into the regulation of glycolysis in the yeast Saccharomyces cerevisiae. Integrative Biology (United Kingdom), 2012, 4, 99-107.	1.3	25
22	Sphingomyelinase D Activity in Model Membranes: Structural Effects of in situ Generation of Ceramide-1-Phosphate. PLoS ONE, 2012, 7, e36003.	2.5	25
23	Oscillations in glycolysis in Saccharomyces cerevisiae: The role of autocatalysis and intracellular ATPase activity. Biophysical Chemistry, 2012, 165-166, 39-47.	2.8	10
24	On the mechanism of oscillations in neutrophils. Biophysical Chemistry, 2010, 148, 82-92.	2.8	6
25	Time-resolved Measurements of Intracellular ATP in the Yeast Saccharomyces cerevisiae using a New Type of Nanobiosensor. Journal of Biological Chemistry, 2010, 285, 37579-37588.	3.4	97
26	Regulation of Glycolytic Oscillations by Mitochondrial and Plasma Membrane H+-ATPases. Biophysical Journal, 2009, 96, 3850-3861.	0.5	74
27	Probing Glycolytic and Membrane Potential Oscillations in Saccharomyces cerevisiae. Biochemistry, 2008, 47, 7477-7484.	2.5	28
28	Single cell studies and simulation of cell–cell interactions using oscillating glycolysis in yeast cells. Biophysical Chemistry, 2007, 125, 275-280.	2.8	41
29	On-line measurements of oscillating mitochondrial membrane potential in glucose-fermentingSaccharomyces cerevisiae. Yeast, 2007, 24, 731-739.	1.7	28
30	Dynamic Instabilities Within Living Neutrophils. , 2007, , 319-335.		0
31	Sustained glycolytic oscillations – no need for cyanide. FEMS Microbiology Letters, 2004, 236, 261-266.	1.8	34
32	On the encoding and decoding of calcium signals in hepatocytes. Biophysical Chemistry, 2004, 107, 83-99.	2.8	40
33	Sustained glycolytic oscillations ? no need for cyanide. FEMS Microbiology Letters, 2004, 236, 261-266.	1.8	29
34	Human myeloperoxidase catalyzes an oscillating peroxidase–oxidase reaction. Archives of Biochemistry and Biophysics, 2004, 431, 55-62.	3.0	7
35	Mechanism of protection of peroxidase activity by oscillatory dynamics. FEBS Journal, 2003, 270, 2796-2804.	0.2	31
36	Mechanism of melatonin-induced oscillations in the peroxidase–oxidase reaction. Archives of Biochemistry and Biophysics, 2003, 410, 287-295.	3.0	7

#	Article	IF	Citations
37	A Model of the Oscillatory Metabolism of Activated Neutrophils. Biophysical Journal, 2003, 84, 69-81.	0.5	67
38	Prediction Analysis for Measles Epidemics. Japanese Journal of Applied Physics, 2003, 42, 7611-7620.	1.5	19
39	Secondary quasiperiodicity in the peroxidase–oxidase reaction. Physical Chemistry Chemical Physics, 2002, 4, 1292-1298.	2.8	10
40	Oscillatory dynamics protect enzymes and possibly cells against toxic substances. Faraday Discussions, 2002, 120, 215-227.	3.2	29
41	Nonlinear Dynamics of the Peroxidaseâ^'Oxidase Reaction:Â I. Bistability and Bursting Oscillations at Low Enzyme Concentrations. Journal of Physical Chemistry B, 2001, 105, 310-321.	2.6	15
42	Melatonin Activates the Peroxidase–Oxidase Reaction and Promotes Oscillations. Biochemical and Biophysical Research Communications, 2001, 284, 1071-1076.	2.1	18
43	Nonlinear Dynamics of the Peroxidaseâ^'Oxidase Reaction. II. Compatibility of an Extended Model with Previously Reported Model-Data Correspondences. Journal of Physical Chemistry B, 2001, 105, 5331-5340.	2.6	19
44	Mitochondria regulate the amplitude of simple and complex calcium oscillations. Biophysical Chemistry, 2001, 94, 59-74.	2.8	47
45	On the role of methylene blue in the oscillating peroxidase–oxidase reaction. Physical Chemistry Chemical Physics, 2000, 2, 1685-1692.	2.8	18
46	Further studies of the effect of magnetic fields on the oscillating peroxidase–oxidase reaction. Physical Chemistry Chemical Physics, 2000, 2, 3443-3446.	2.8	21
47	Perturbations of Simple Oscillations and Complex Dynamics in the Peroxidaseâ^'Oxidase Reaction Using Magnetic Fields. Journal of Physical Chemistry B, 2000, 104, 140-146.	2.6	21
48	Effect of Magnetic Fields on an Oscillating Enzyme Reaction. Journal of the American Chemical Society, 1999, 121, 6351-6354.	13.7	22
49	Routes to chaos in the peroxidase-oxidase reaction. , 1999, , 252-272.		3
50	Oscillations in peroxidase-catalyzed reactions and their potential function in vivo. Biophysical Chemistry, 1998, 72, 63-72.	2.8	36
51	Routes to Chaos in the Peroxidaseâ^Oxidase Reaction. 2. The Fat Torus Scenario. Journal of Physical Chemistry B, 1998, 102, 632-640.	2.6	21
52	The Role of Naturally Occurring Phenols in Inducing Oscillations in the Peroxidaseâ^'Oxidase Reaction. Biochemistry, 1998, 37, 2458-2469.	2.5	45
53	Routes to Chaos in the Peroxidaseâ^Oxidase Reaction:Â Period-Doubling and Period-Adding. Journal of Physical Chemistry B, 1997, 101, 5075-5083.	2.6	52
54	Oscillations and Complex Dynamics in the Peroxidaseâ^'Oxidase Reaction Induced by Naturally Occurring Aromatic Substrates. Journal of the American Chemical Society, 1997, 119, 2084-2087.	13.7	24

#	Article	IF	Citations
55	Mixed-mode oscillations and homoclinic chaos in an enzyme reaction. Journal of the Chemical Society, Faraday Transactions, 1996, 92, 2857.	1.7	63
56	Oscillations in the peroxidase-oxidase reaction: a comparison of different peroxidases. Biochimica Et Biophysica Acta - General Subjects, 1996, 1289, 397-403.	2.4	26
57	Quasiperiodicity in a detailed model of the peroxidase–oxidase reaction. Journal of Chemical Physics, 1996, 105, 10849-10859.	3.0	23
58	Nonlinear analyses of periodic and chaotic time series from the peroxidase-oxidase reaction. The Journal of Physical Chemistry, 1993, 97, 8431-8441.	2.9	15
59	CHAOS IN BIOCHEMICAL SYSTEMS: THE PEROXIDASE REACTION AS A CASE STUDY. , 1993, , 175-224.		17
60	Period-doubling bifurcations and chaos in an enzyme reaction. The Journal of Physical Chemistry, 1992, 96, 5678-5680.	2.9	68
61	The cell division cycle: a physiologically plausible dynamic model can exhibit chaotic solutions. BioSystems, 1992, 27, 17-24.	2.0	27
62	Exploring Nature's Roulette Wheel: Chaos in Biological Systems. , 1991, , 173-185.		1
63	THE PEROXIDASE-OXIDASE REACTION: A CASE FOR CHAOS IN THE BIOCHEMISTRY OF THE CELL. , 1991, , 299-315.		2
64	Experimental evidence for the coexistence of oscillatory and steady states in the peroxidase-oxidase reaction. Journal of the American Chemical Society, 1990, 112, 6652-6656.	13.7	32
65	Low Dimensional Strange Attractors in Epidemics of Childhood Diseases in Copenhagen, Denmark. , 1987, , 249-254.		5
66	Effects of Periodic and Stochastic Perturbations on Oscillations and Chaos in a Model of the Peroxidase-Oxidase Reaction. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 1985, 40, 1283-1288.	1.5	5
67	Chaos in biological systems. Quarterly Reviews of Biophysics, 1985, 18, 165-225.	5.7	188
68	Electron Transfer Reactions Involving Plastoquinone in Stacked and Unstacked Thylakoids. , 1984, , 71-74.		0
69	Transient and Steady-State Kinetics of the Reaction Between Cytochrome c and the Photosystem I Reaction Centre in Cyanobacteria. , 1984, , 675-678.		0
70	An enzyme reaction with a strange attractor. Physics Letters, Section A: General, Atomic and Solid State Physics, 1983, 94, 454-457.	2.1	71
71	Transient kinetics of the electron transfer between P-700, plastocyanin and cytochrome f in chloroplasts suspended in fluid media at sub-zero temperatures. Biochimica Et Biophysica Acta - Bioenergetics, 1982, 682, 482-490.	1.0	16
72	Transient kinetics of the reaction between cytochrome c-552 or plastocyanin and P-700 in subchloroplast particles. Biochimica Et Biophysica Acta - Bioenergetics, 1982, 679, 436-443.	1.0	20

#	Article	IF	CITATION
73	Flash-induced redox changes of P700 and plastocyanin in chloroplasts suspended in fluid media at sub-zero temperatures. FEBS Letters, 1980, 122, 13-16.	2.8	16
74	A flash spectroscopic study of the kinetics of the electrochromic shift, proton release and the redox behaviour of cytochromes f and b -563 during cyclic electron flow. FEBS Letters, 1980, 118, 11-17.	2.8	28
75	The effect of intrathylakoid pH* on the rate of chloroplast electron transport reactions at subzero temperatures. FEBS Letters, 1979, 103, 250-252.	2.8	6
76	BISTABILITY, OSCILLATION, AND CHAOS IN AN ENZYME REACTION. Annals of the New York Academy of Sciences, 1979, 316, 623-637.	3.8	66
77	Studies of the Chaotic Behaviour in the Peroxidase-Oxidase Reaction. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 1979, 34, 1544-1546.	1.5	8
78	Proton Transport Across the Thylakoid Membrane at Subzero Temperatures. Biochemical Society Transactions, 1979, 7, 1117-1117.	3.4	0
79	Oscillatory kinetics of the peroxidase-oxidase reaction in an open system. Experimental and theoretical studies. Biochimica Et Biophysica Acta - Biomembranes, 1978, 523, 321-334.	2.6	76
80	Light-Induced Protein Uptake in Chloroplasts Suspended in Fluid Media at Subzero Temperatures. Biochemical Society Transactions, 1978, 6, 1277-1277.	3.4	0
81	Chaos in an enzyme reaction. Nature, 1977, 267, 177-178.	27.8	215
82	No music without melody: How to understand biochemical systems by understanding their dynamics. , 0, , 81-93.		0