Vadim Makarov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11447198/publications.pdf

Version: 2024-02-01

57	4,744	32	53
papers	citations	h-index	g-index
60	60	60	1867
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	An approach for security evaluation and certification of a complete quantum communication system. Scientific Reports, 2021, 11, 5110.	1.6	13
2	A low-noise single-photon detector for long-distance free-space quantum communication. EPJ Quantum Technology, $2021, 8, .$	2.9	4
3	Bright-light detector control emulates the local bounds of Bell-type inequalities. Scientific Reports, 2020, 10, 13205.	1.6	1
4	Attacking quantum key distribution by light injection via ventilation openings. PLoS ONE, 2020, 15, e0236630.	1.1	7
5	Laser-Damage Attack Against Optical Attenuators in Quantum Key Distribution. Physical Review Applied, 2020, 13, .	1.5	49
6	Optical control of single-photon negative-feedback avalanche diode detector. Journal of Applied Physics, 2020, 127, .	1.1	19
7	Attacking quantum key distribution by light injection via ventilation openings. , 2020, 15, e0236630.		0
8	Attacking quantum key distribution by light injection via ventilation openings., 2020, 15, e0236630.		0
9	Attacking quantum key distribution by light injection via ventilation openings. , 2020, 15, e0236630.		0
10	Attacking quantum key distribution by light injection via ventilation openings., 2020, 15, e0236630.		0
11	Eavesdropper's ability to attack a free-space quantum-key-distribution receiver in atmospheric turbulence. Physical Review A, 2019, 99, .	1.0	26
12	Laser-seeding Attack in Quantum Key Distribution. Physical Review Applied, 2019, 12, .	1.5	56
13	Comment on â€~Inherent security of phase coding quantum key distribution systems against detector blinding attacks' (2018 <i>Laser Phys. Lett</i> . 15 095203). Laser Physics Letters, 2019, 16, 019401.	0.6	7
14	Countermeasure against bright-light attack on superconducting nanowire single-photon detector in quantum key distribution. Optics Express, 2019, 27, 30979.	1.7	10
15	Controlling single-photon detector ID210 with bright light. Optics Express, 2019, 27, 32253.	1.7	27
16	Implementation vulnerabilities in general quantum cryptography. New Journal of Physics, 2018, 20, 103016.	1.2	40
17	Quantum key distribution with distinguishable decoy states. Physical Review A, 2018, 98, .	1.0	49
18	Homodyne-detector-blinding attack in continuous-variable quantum key distribution. Physical Review A, 2018, 98, .	1.0	74

#	Article	IF	CITATIONS
19	Eavesdropping and countermeasures for backflash side channel in quantum cryptography. Optics Express, 2018, 26, 21020.	1.7	39
20	Airborne demonstration of a quantum key distribution receiver payload. Quantum Science and Technology, 2017, 2, 024009.	2.6	86
21	Invisible Trojan-horse attack. Scientific Reports, 2017, 7, 8403.	1.6	37
22	Mitigating radiation damage of single photon detectors for space applications. EPJ Quantum Technology, 2017, 4, 10.	2.9	31
23	Laser annealing heals radiation damage in avalanche photodiodes. EPJ Quantum Technology, 2017, 4, 11.	2.9	14
24	Finite-key-size effect in a commercial plug-and-play QKD system. Quantum Science and Technology, 2017, 2, 044003.	2.6	24
25	Secure detection in quantum key distribution by real-time calibration of receiver. Quantum Science and Technology, 2017, 2, 044013.	2.6	14
26	Insecurity of Detector-Device-Independent Quantum Key Distribution. Physical Review Letters, 2016, 117, 250505.	2.9	46
27	Testing Random-Detector-Efficiency Countermeasure in a Commercial System Reveals a Breakable Unrealistic Assumption. IEEE Journal of Quantum Electronics, 2016, 52, 1-11.	1.0	60
28	Creation of backdoors in quantum communications via laser damage. Physical Review A, 2016, 94, .	1.0	53
29	Experimental quantum key distribution with source flaws. Physical Review A, 2015, 92, .	1.0	69
30	Security loophole in free-space quantum key distribution due to spatial-mode detector-efficiency mismatch. Physical Review A, 2015, 91, .	1.0	71
31	Risk Analysis of Trojan-Horse Attacks on Practical Quantum Key Distribution Systems. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21, 168-177.	1.9	86
32	Attacks exploiting deviation of mean photon number in quantum key distribution and coin tossing. Physical Review A, 2015, 91, .	1.0	62
33	Publisher's Note: Attacks exploiting deviation of mean photon number in quantum key distribution and coin tossing [Phys. Rev. A 91 , 032326 (2015)]. Physical Review A, 2015, 91, .	1.0	5
34	Trojan-horse attacks threaten the security of practical quantum cryptography. New Journal of Physics, 2014, 16, 123030.	1.2	124
35	Optimised quantum hacking of superconducting nanowire single-photon detectors. Optics Express, 2014, 22, 6734.	1.7	39
36	A universal setup for active control of a single-photon detector. Review of Scientific Instruments, 2014, 85, 013108.	0.6	26

#	Article	IF	CITATIONS
37	Laser Damage Helps the Eavesdropper in Quantum Cryptography. Physical Review Letters, 2014, 112, 070503.	2.9	100
38	Quantum teleportation over 143 kilometres using active feed-forward. Nature, 2012, 489, 269-273.	13.7	490
39	Device Calibration Impacts Security of Quantum Key Distribution. Physical Review Letters, 2011, 107, 110501.	2.9	194
40	Secure gated detection scheme for quantum cryptography. Physical Review A, 2011, 83, .	1.0	29
41	Superlinear threshold detectors in quantum cryptography. Physical Review A, 2011, 84, .	1.0	65
42	Experimentally Faking the Violation of Bell's Inequalities. Physical Review Letters, 2011, 107, 170404.	2.9	153
43	Ultra-low noise single-photon detector based on Si avalanche photodiode. Review of Scientific Instruments, 2011, 82, 093110.	0.6	26
44	Controlling an actively-quenched single photon detector with bright light. Optics Express, 2011, 19, 23590.	1.7	55
45	Full-field implementation of a perfect eavesdropper on a quantum cryptography system. Nature Communications, 2011, 2, 349.	5.8	373
46	Controlling a superconducting nanowire single-photon detector using tailored bright illumination. New Journal of Physics, 2011, 13, 113042.	1.2	127
47	Comment on "Resilience of gated avalanche photodiodes against bright illumination attacks in quantum cryptography―[Appl. Phys. Lett. 98, 231104 (2011)]. Applied Physics Letters, 2011, 99, .	1.5	28
48	Cracking quantum cryptography., 2011, , .		1
49	Hacking commercial quantum cryptography systems by tailored bright illumination. Nature Photonics, 2010, 4, 686-689.	15.6	844
50	Avoiding the blinding attack in QKD. Nature Photonics, 2010, 4, 801-801.	15.6	45
51	Thermal blinding of gated detectors in quantum cryptography. Optics Express, 2010, 18, 27938.	1.7	113
52	Controlling passively quenched single photon detectors by bright light. New Journal of Physics, 2009, 11, 065003.	1,2	154
53	Effects of detector efficiency mismatch on security of quantum cryptosystems. Physical Review A, 2006, 74, .	1.0	305
54	Faked states attack on quantum cryptosystems. Journal of Modern Optics, 2005, 52, 691-705.	0.6	179

VADIM MAKAROV

#	Article	IF	CITATIONS
55	Real-time phase tracking in single-photon interferometers. Applied Optics, 2004, 43, 4385.	2.1	31
56	Large pulse attack as a method of conventional optical eavesdropping in quantum cryptography. Journal of Modern Optics, 2001, 48, 2023-2038.	0.6	128
57	Large pulse attack as a method of conventional optical eavesdropping in quantum cryptography. , 0, .		6