
Vadim Makarov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11447198/publications.pdf Version: 2024-02-01

VADIM MAKADOV

#	Article	IF	CITATIONS
1	Hacking commercial quantum cryptography systems by tailored bright illumination. Nature Photonics, 2010, 4, 686-689.	15.6	844
2	Quantum teleportation over 143 kilometres using active feed-forward. Nature, 2012, 489, 269-273.	13.7	490
3	Full-field implementation of a perfect eavesdropper on a quantum cryptography system. Nature Communications, 2011, 2, 349.	5.8	373
4	Effects of detector efficiency mismatch on security of quantum cryptosystems. Physical Review A, 2006, 74, .	1.0	305
5	Device Calibration Impacts Security of Quantum Key Distribution. Physical Review Letters, 2011, 107, 110501.	2.9	194
6	Faked states attack on quantum cryptosystems. Journal of Modern Optics, 2005, 52, 691-705.	0.6	179
7	Controlling passively quenched single photon detectors by bright light. New Journal of Physics, 2009, 11, 065003.	1.2	154
8	Experimentally Faking the Violation of Bell's Inequalities. Physical Review Letters, 2011, 107, 170404.	2.9	153
9	Large pulse attack as a method of conventional optical eavesdropping in quantum cryptography. Journal of Modern Optics, 2001, 48, 2023-2038.	0.6	128
10	Controlling a superconducting nanowire single-photon detector using tailored bright illumination. New Journal of Physics, 2011, 13, 113042.	1.2	127
11	Trojan-horse attacks threaten the security of practical quantum cryptography. New Journal of Physics, 2014, 16, 123030.	1.2	124
12	Thermal blinding of gated detectors in quantum cryptography. Optics Express, 2010, 18, 27938.	1.7	113
13	Laser Damage Helps the Eavesdropper in Quantum Cryptography. Physical Review Letters, 2014, 112, 070503.	2.9	100
14	Risk Analysis of Trojan-Horse Attacks on Practical Quantum Key Distribution Systems. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21, 168-177.	1.9	86
15	Airborne demonstration of a quantum key distribution receiver payload. Quantum Science and Technology, 2017, 2, 024009.	2.6	86
16	Homodyne-detector-blinding attack in continuous-variable quantum key distribution. Physical Review A, 2018, 98, .	1.0	74
17	Security loophole in free-space quantum key distribution due to spatial-mode detector-efficiency mismatch. Physical Review A, 2015, 91, .	1.0	71
18	Experimental quantum key distribution with source flaws. Physical Review A, 2015, 92, .	1.0	69

VADIM MAKAROV

#	Article	IF	CITATIONS
19	Superlinear threshold detectors in quantum cryptography. Physical Review A, 2011, 84, .	1.0	65
20	Attacks exploiting deviation of mean photon number in quantum key distribution and coin tossing. Physical Review A, 2015, 91, .	1.0	62
21	Testing Random-Detector-Efficiency Countermeasure in a Commercial System Reveals a Breakable Unrealistic Assumption. IEEE Journal of Quantum Electronics, 2016, 52, 1-11.	1.0	60
22	Laser-seeding Attack in Quantum Key Distribution. Physical Review Applied, 2019, 12, .	1.5	56
23	Controlling an actively-quenched single photon detector with bright light. Optics Express, 2011, 19, 23590.	1.7	55
24	Creation of backdoors in quantum communications via laser damage. Physical Review A, 2016, 94, .	1.0	53
25	Quantum key distribution with distinguishable decoy states. Physical Review A, 2018, 98, .	1.0	49
26	Laser-Damage Attack Against Optical Attenuators in Quantum Key Distribution. Physical Review Applied, 2020, 13, .	1.5	49
27	Insecurity of Detector-Device-Independent Quantum Key Distribution. Physical Review Letters, 2016, 117, 250505.	2.9	46
28	Avoiding the blinding attack in QKD. Nature Photonics, 2010, 4, 801-801.	15.6	45
29	Implementation vulnerabilities in general quantum cryptography. New Journal of Physics, 2018, 20, 103016.	1.2	40
30	Optimised quantum hacking of superconducting nanowire single-photon detectors. Optics Express, 2014, 22, 6734.	1.7	39
31	Eavesdropping and countermeasures for backflash side channel in quantum cryptography. Optics Express, 2018, 26, 21020.	1.7	39
32	Invisible Trojan-horse attack. Scientific Reports, 2017, 7, 8403.	1.6	37
33	Real-time phase tracking in single-photon interferometers. Applied Optics, 2004, 43, 4385.	2.1	31
34	Mitigating radiation damage of single photon detectors for space applications. EPJ Quantum Technology, 2017, 4, 10.	2.9	31
35	Secure gated detection scheme for quantum cryptography. Physical Review A, 2011, 83, .	1.0	29
36	Comment on "Resilience of gated avalanche photodiodes against bright illumination attacks in quantum cryptography―[Appl. Phys. Lett. 98, 231104 (2011)]. Applied Physics Letters, 2011, 99, .	1.5	28

VADIM MAKAROV

#	Article	IF	CITATIONS
37	Controlling single-photon detector ID210 with bright light. Optics Express, 2019, 27, 32253.	1.7	27
38	Ultra-low noise single-photon detector based on Si avalanche photodiode. Review of Scientific Instruments, 2011, 82, 093110.	0.6	26
39	A universal setup for active control of a single-photon detector. Review of Scientific Instruments, 2014, 85, 013108.	0.6	26
40	Eavesdropper's ability to attack a free-space quantum-key-distribution receiver in atmospheric turbulence. Physical Review A, 2019, 99, .	1.0	26
41	Finite-key-size effect in a commercial plug-and-play QKD system. Quantum Science and Technology, 2017, 2, 044003.	2.6	24
42	Optical control of single-photon negative-feedback avalanche diode detector. Journal of Applied Physics, 2020, 127, .	1.1	19
43	Laser annealing heals radiation damage in avalanche photodiodes. EPJ Quantum Technology, 2017, 4, 11.	2.9	14
44	Secure detection in quantum key distribution by real-time calibration of receiver. Quantum Science and Technology, 2017, 2, 044013.	2.6	14
45	An approach for security evaluation and certification of a complete quantum communication system. Scientific Reports, 2021, 11, 5110.	1.6	13
46	Countermeasure against bright-light attack on superconducting nanowire single-photon detector in quantum key distribution. Optics Express, 2019, 27, 30979.	1.7	10
47	Comment on â€~Inherent security of phase coding quantum key distribution systems against detector blinding attacks' (2018 <i>Laser Phys. Lett</i> . 15 095203). Laser Physics Letters, 2019, 16, 019401	. 0.6	7
48	Attacking quantum key distribution by light injection via ventilation openings. PLoS ONE, 2020, 15, e0236630.	1.1	7
49	Large pulse attack as a method of conventional optical eavesdropping in quantum cryptography. , 0, .		6
50	Publisher's Note: Attacks exploiting deviation of mean photon number in quantum key distribution and coin tossing [Phys. Rev. A 91 , 032326 (2015)]. Physical Review A, 2015, 91, .	1.0	5
51	A low-noise single-photon detector for long-distance free-space quantum communication. EPJ Quantum Technology, 2021, 8, .	2.9	4
52	Cracking quantum cryptography. , 2011, , .		1
53	Bright-light detector control emulates the local bounds of Bell-type inequalities. Scientific Reports, 2020, 10, 13205.	1.6	1
54	Attacking quantum key distribution by light injection via ventilation openings. , 2020, 15, e0236630.		0

#	Article	IF	CITATIONS
55	Attacking quantum key distribution by light injection via ventilation openings. , 2020, 15, e0236630.		Ο
56	Attacking quantum key distribution by light injection via ventilation openings. , 2020, 15, e0236630.		0
57	Attacking quantum key distribution by light injection via ventilation openings. , 2020, 15, e0236630.		0