John J Buchanan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11446518/publications.pdf Version: 2024-02-01

ΙΟΗΝ Ι Βυςηληλη

#	Article	IF	CITATIONS
1	The Interactions Between Primary Somatosensory and Motor Cortex during Human Grasping Behaviors. Neuroscience, 2022, 485, 1-11.	2.3	8
2	The decay and consolidation of effector-independent motor memories. Scientific Reports, 2022, 12, 3131.	3.3	4
3	Individual goals interact with dyad goals to constrain and facilitate the formation of interpersonal patterns of coordination. Human Movement Science, 2022, 83, 102949.	1.4	1
4	Differences in motor unit recruitment patterns and low frequency oscillation of discharge rates between unilateral and bilateral isometric muscle contractions. Human Movement Science, 2022, 83, 102952.	1.4	2
5	Towards autonomous ergonomic upper-limb exoskeletons: A computational approach for planning a human-like path. Robotics and Autonomous Systems, 2021, 145, 103843.	5.1	2
6	Improving online and offline gain from repetitive practice using anodal tDCS at dorsal premotor cortex. Npj Science of Learning, 2021, 6, 31.	2.8	3
7	Application of anodal tDCS at primary motor cortex immediately after practice of a motor sequence does not improve offline gain. Experimental Brain Research, 2020, 238, 29-37.	1.5	13
8	Off-line learning in a rhythmic bimanual task: early feedback dependency is reduced over wakefulness. Psychological Research, 2020, 85, 1503-1514.	1.7	0
9	Motor and spatial representations of action: corticospinal excitability in M1 after training with a bimanual skill. Experimental Brain Research, 2020, 238, 1191-1202.	1.5	0
10	Mirror-hand selection is influenced by training perspective and model skill level in a motor-learning task. Experimental Brain Research, 2019, 237, 417-426.	1.5	4
11	Expert monitoring and verbal feedback as sources of performance pressure. Acta Psychologica, 2018, 186, 39-46.	1.5	4
12	Motor Skill Learning and the Development of Visual Perception Processes Supporting Action Identification. Journal of Motor Behavior, 2018, 50, 566-578.	0.9	3
13	Observation and physical practice: different practice contexts lead to similar outcomes for the acquisition of kinematic information. Psychological Research, 2017, 81, 83-98.	1.7	5
14	Bimanual coordination patterns are stabilized under monitoring-pressure. Experimental Brain Research, 2017, 235, 1909-1918.	1.5	3
15	The Coordination Dynamics of Observational Learning: Relative Motion Direction and Relative Phase as Informational Content Linking Action-Perception to Action-Production. Advances in Experimental Medicine and Biology, 2016, 957, 209-228.	1.6	4
16	Perception and action influences on discrete and reciprocal bimanual coordination. Psychonomic Bulletin and Review, 2016, 23, 361-386.	2.8	45
17	The perception–action dynamics of action competency are altered by both physical and observational training. Experimental Brain Research, 2015, 233, 1289-1305.	1.5	11
18	Perceptual Estimates of Motor Skill Proficiency Are Constrained by the Stability of Coordination Patterns. Journal of Motor Behavior, 2015, 47, 453-464.	0.9	7

John J Buchanan

#	Article	IF	CITATIONS
19	Consistently modeling the same movement strategy is more important than model skill level in observational learning contexts. Acta Psychologica, 2014, 146, 19-27.	1.5	14
20	Flexibility in the control of rapid aiming actions. Experimental Brain Research, 2013, 229, 47-60.	1.5	3
21	Scaling Movement Amplitude: Adaptation of Timing and Amplitude Control in a Bimanual Task. Journal of Motor Behavior, 2012, 44, 135-147.	0.9	12
22	Overcoming the guidance effect in motor skill learning: feedback all the time can be beneficial. Experimental Brain Research, 2012, 219, 305-320.	1.5	32
23	Generalization of action knowledge following observational learning. Acta Psychologica, 2011, 136, 167-178.	1.5	18
24	Perceptual and attentional influences on continuous 2:1 and 3:2 multi-frequency bimanual coordination Journal of Experimental Psychology: Human Perception and Performance, 2010, 36, 936-954.	0.9	55
25	Impossible is nothing: 5:3 and 4:3 multi-frequency bimanual coordination. Experimental Brain Research, 2010, 201, 249-259.	1.5	85
26	Specificity in practice benefits learning in novice models and variability in demonstration benefits observational practice. Psychological Research, 2010, 74, 313-326.	1.7	38
27	Identifying Leading Joint Strategies in a Bimanual Coordination Task: Does Coordination Stability Depend on Leading Joint Strategy?. Journal of Motor Behavior, 2009, 42, 49-60.	0.9	2
28	Bimanual 1:1 with 90° continuous relative phase: difficult or easy!. Experimental Brain Research, 2009, 193, 129-136.	1.5	80
29	Learning an environment–actor coordination skill: visuomotor transformation and coherency of perceptual structure. Experimental Brain Research, 2009, 196, 279-293.	1.5	18
30	Using scanning trials to assess intrinsic coordination dynamics. Neuroscience Letters, 2009, 455, 162-167.	2.1	36
31	Observational practice of relative but not absolute motion features in a single-limb multi-joint coordination task. Experimental Brain Research, 2008, 191, 157-169.	1.5	27
32	Learning and Transfer of a Relative Phase Pattern and a Joint Amplitude Ratio in a Rhythmic Multijoint Arm Movement. Journal of Motor Behavior, 2007, 39, 49-67.	0.9	24
33	Right-Handers' Reaching in Contralateral Hemispace: A Kinematic Observation. Journal of Motor Behavior, 2007, 39, 451-456.	0.9	9
34	Target width scaling in a repetitive aiming task: switching between cyclical and discrete units of action. Experimental Brain Research, 2006, 175, 710-725.	1.5	82
35	One-to-One and Polyrhythmic Temporal Coordination in Bimanual Circle Tracing. Journal of Motor Behavior, 2006, 38, 163-184.	0.9	26
36	The Interaction of Tactile Information and Movement Amplitude in a Multijoint Bimanual Circle-Tracing Task: Phase Transitions and Loss of Stability. Quarterly Journal of Experimental Psychology Section A: Human Experimental Psychology, 2005, 58, 769-787.	2.3	20

John J Buchanan

#	Article	IF	CITATIONS
37	Amplitude Scaling in a Bimanual Circle-Drawing Task: Pattern Switching and End-Effector Variability. Journal of Motor Behavior, 2004, 36, 265-279.	0.9	33
38	Learning a single limb multijoint coordination pattern: the impact of a mechanical constraint on the coordination dynamics of learning and transfer. Experimental Brain Research, 2004, 156, 39-54.	1.5	45
39	Systematic scaling of target width: dynamics, planning, and feedback. Neuroscience Letters, 2004, 367, 317-322.	2.1	37
40	Discrete and cyclical units of action in a mixed target pair aiming task. Experimental Brain Research, 2003, 150, 473-489.	1.5	62
41	Voluntary control of postural equilibrium patterns. Behavioural Brain Research, 2003, 143, 121-140.	2.2	40
42	Vestibular loss disrupts control of head and trunk on a sinusoidally moving platform. Journal of Vestibular Research: Equilibrium and Orientation, 2002, 11, 371-389.	2.0	53
43	Transitions in a postural task: do the recruitment and suppression of degrees of freedom stabilize posture?. Experimental Brain Research, 2001, 139, 482-494.	1.5	57
44	Emergence of Postural Patterns as a Function of Vision and Translation Frequency. Journal of Neurophysiology, 1999, 81, 2325-2339.	1.8	188