
Ona Illa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1144403/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chalcogenides as Organocatalysts. Chemical Reviews, 2007, 107, 5841-5883.	47.7	420
2	Amphiphiles in aqueous solution: well beyond a soap bubble. Chemical Society Reviews, 2013, 42, 8200.	38.1	228
3	Practical and Highly Selective Sulfur Ylide Mediated Asymmetric Epoxidations and Aziridinations Using an Inexpensive, Readily Available Chiral Sulfide. Applications to the Synthesis of Quinine and Quinidine. Journal of the American Chemical Society, 2010, 132, 1828-1830.	13.7	157
4	Practical and Highly Selective Sulfur Ylide-Mediated Asymmetric Epoxidations and Aziridinations Using a Cheap and Readily Available Chiral Sulfide: Extensive Studies To Map Out Scope, Limitations, and Rationalization of Diastereo- and Enantioselectivities. Journal of the American Chemical Society, 2013, 135, 11951-11966.	13.7	102
5	Replacement of Thr ³² and Gln ³⁴ in the <i>C</i> -Terminal Neuropeptide Y Fragment 25–36 by <i>cis</i> -Cyclobutane and <i>cis</i> -Cyclopentane β-Amino Acids Shifts Selectivity toward the Y ₄ Receptor. Journal of Medicinal Chemistry, 2013, 56, 8422-8431.	6.4	46
6	Synthesis of a Mixed Phosphonium–Sulfonium Bisylide R ₃ PCSR ₂ . Angewandt Chemie - International Edition, 2007, 46, 9078-9080.	.e 13.8	42
7	Cyclopropanation of Cyclohexenone by Diazomethane Catalyzed by Palladium Diacetate:Â Evidence for the Formation of Palladium(0) Nanoparticles. Organometallics, 2007, 26, 3306-3314.	2.3	38
8	Synthesis and Application of Easily Recyclable Thiomorpholines for Use in Sulfur Ylide Mediated Asymmetric Epoxidation of Aldehydes. Chemistry - an Asian Journal, 2008, 3, 1657-1663.	3.3	32
9	Low-molecular-weight gelators consisting of hybrid cyclobutane-based peptides. Organic and Biomolecular Chemistry, 2013, 11, 2839.	2.8	32
10	Stereoselectivity of Proline/Cyclobutane Amino Acid-Containing Peptide Organocatalysts for Asymmetric Aldol Additions: A Rationale. Journal of Organic Chemistry, 2018, 83, 350-363.	3.2	25
11	Reactions of a Stable (Phosphanyl)(silyl)carbene with Aliphatic Aldehydes: [2+1] versus [2+2] Addition to a Carbonyl Group. European Journal of Organic Chemistry, 2003, 2003, 3147-3152.	2.4	24
12	Stereoselective Synthesis of Phosphoranyl Aryloxiranes through the Addition of a Nucleophilic Stable Carbene to Aromatic Aldehydes. Journal of Organic Chemistry, 2003, 68, 7707-7710.	3.2	24
13	Diastereodivergent Synthesis of Chiral <i>vic</i> â€Ðisubstituted yclobutane Scaffolds: 1,3â€Amino Alcohol and 1,3â€Diamine Derivatives – Preliminary Use in Organocatalysis. European Journal of Organic Chemistry, 2013, 2013, 1425-1433.	2.4	24
14	Synthesis of Chiral Cyclobutane Containing <i>C</i> ₃ -Symmetric Peptide Dendrimers. Organic Letters, 2010, 12, 3148-3151.	4.6	23
15	Designing hybrid foldamers: the effect on the peptide conformational bias of β- versus α- and γ-linear residues in alternation with (1R,2S)-2-aminocyclobutane-1-carboxylic acid. Organic and Biomolecular Chemistry, 2012, 10, 861-868.	2.8	23
16	Stereoselective Synthesis of All Stereoisomers of Orthogonally Protected Cyclobutane-1,2-diamine and Some Chemoselective Transformations. Organic Letters, 2012, 14, 2431-2433.	4.6	20
17	Chiral Cyclobutane β-Amino Acid-Based Amphiphiles: Influence of <i>Cis</i> / <i>Trans</i> Stereochemistry on Solution Self-Aggregation and Recognition. Langmuir, 2015, 31, 9608-9618.	3.5	20
18	Photolysis of Chiral 1-Pyrazolines to Cyclopropanes:Â Mechanism and Stereospecificity. Journal of Organic Chemistry, 2003, 68, 4906-4911.	3.2	19

Ona Illa

#	Article	IF	CITATIONS
19	Theoretical and Experimental Investigation of the Basicity of Phosphino(silyl)carbenes. Journal of Organic Chemistry, 2005, 70, 5671-5677.	3.2	18
20	Synthesis and structural study of highly constrained hybrid cyclobutane-proline γ,γ-peptides. Amino Acids, 2011, 41, 673-686.	2.7	17
21	Searching for new cell-penetrating agents: hybrid cyclobutane–proline γ,γ-peptides. Organic and Biomolecular Chemistry, 2012, 10, 4050.	2.8	17
22	The Role of the Chiral <i>cis</i> â€1,3â€Disubstituted 2,2â€Dimethylcyclobutane Motif in the Conformational Bias of Several Types of γâ€Peptides. European Journal of Organic Chemistry, 2013, 2013, 3494-3503.	2.4	16
23	On the stereoselective hydrogenation of chiral cyclobutyl dehydro-amino acid derivatives: influence of the catalyst in the π-facial diastereoselection. Tetrahedron: Asymmetry, 2001, 12, 25-28.	1.8	15
24	Chiral Cyclobutane β-Amino Acid-Based Amphiphiles: Influence of <i>Cis/Trans</i> Stereochemistry on Condensed Phase and Monolayer Structure. Langmuir, 2016, 32, 6977-6984.	3.5	13
25	A comparative study on the 1,3-dipolar cycloadditions of diazomethane and bis(diisopropylamino)phosphinodiazomethane to chiral electron-deficient olefins: reactivity and diastereoselectivity. Tetrahedron: Asymmetry, 2002, 13, 2593-2603.	1.8	10
26	Synthesis of Chiral Functionalised Cyclobutylpyrrolidines and Cyclobutylamino Alcohols from (–)â€{ <i>S</i>)â€Verbenone – Applications in the Stabilisation of Ruthenium Nanocatalysts. European Journal of Organic Chemistry, 2015, 2015, 810-819.	2.4	10
27	Studies on Cycloalkaneâ€Based Bisamide Organogelators: A New Example of Stochastic Chiral Symmetryâ€Breaking Induced by Sonication. Chemistry - A European Journal, 2017, 23, 3357-3365.	3.3	10
28	Gadolinium Complexes of Highly Rigid, Open-Chain Ligands Containing a Cyclobutane Ring in the Backbone: Decreasing Ligand Denticity Might Enhance Kinetic Inertness. Inorganic Chemistry, 2019, 58, 13170-13183.	4.0	10
29	Reaction of C-Silylated α-Diazophosphines as Nucleophiles toward Carbonyl Compounds:  A Mechanistic Study and Application to the Synthesis of Alkynes and α-Hydroxyphosphonamides. Journal of Organic Chemistry, 2006, 71, 5320-5327.	3.2	9
30	Highly stereoselective and easy synthesis of enantiopure phosphoranyl oxiranes. Tetrahedron: Asymmetry, 2007, 18, 2617-2620.	1.8	9
31	Synthesis of Isothiocineole and Application in Multigram-Scale Sulfur Ylide Mediated Asymmetric Epoxidation and Aziridination. Synthesis, 2018, 50, 3337-3343.	2.3	9
32	Thioxophosphoranyl aryl- and heteroaryloxiranes as the representants of a new class of metallocarboxypeptidase inhibitors. Bioorganic and Medicinal Chemistry, 2008, 16, 4823-4828.	3.0	8
33	Cyclobutane Scaffold in Bolaamphiphiles: Effect of Diastereoisomerism and Regiochemistry on Their Surface Activity Aggregate Structure. Langmuir, 2018, 34, 11424-11432.	3.5	8
34	Efficient DNA Condensation Induced by Chiral β-Amino Acid-Based Cationic Surfactants. ACS Applied Bio Materials, 2021, 4, 7034-7043.	4.6	8
35	Understanding the π-facial diastereoselectivity in the addition of chiral diaminophosphino(silyl)carbenes to activated olefins. Tetrahedron: Asymmetry, 2008, 19, 2353-2358.	1.8	7
36	Cyclobutane-based peptides/terpyridine conjugates: Their use in metal catalysis and as functional organogelators. Tetrahedron, 2018, 74, 7252-7260.	1.9	7

Ona Illa

#	Article	IF	CITATIONS
37	Chiral pH-sensitive cyclobutane β-amino acid-based cationic amphiphiles: Possible candidates for use in gene therapy. Journal of Molecular Liquids, 2020, 297, 111856.	4.9	7
38	TiO2-mediated visible-light-driven hydrogen evolution by ligand-capped Ru nanoparticles. Sustainable Energy and Fuels, 2020, 4, 4170-4178.	4.9	7
39	The relevance of the relative configuration in the folding of hybrid peptides containing β-cyclobutane amino acids and γ-amino- l -proline residues. Tetrahedron, 2017, 73, 6286-6295.	1.9	6
40	Divergent synthetic routes to biologically relevant types of compounds: chiral polyfunctional Î ³ -lactams and amino acids. Tetrahedron, 2014, 70, 6546-6553.	1.9	5
41	Hybrid Cyclobutane/Proline-Containing Peptidomimetics: The Conformational Constraint Influences Their Cell-Penetration Ability. International Journal of Molecular Sciences, 2021, 22, 5092.	4.1	5
42	Chiral Cyclobutane-Containing Cell-Penetrating Peptides as Selective Vectors for Anti-Leishmania Drug Delivery Systems. International Journal of Molecular Sciences, 2020, 21, 7502.	4.1	4
43	Stability, relaxometric and computational studies on Mn ²⁺ complexes with ligands containing a cyclobutane scaffold. Dalton Transactions, 2021, 50, 1076-1085.	3.3	4
44	New chiral polyfunctional cyclobutane derivatives from (â^')-verbenone: possible surfactant behaviour. Tetrahedron: Asymmetry, 2013, 24, 713-718.	1.8	3
45	Synthesis of Chiral Scaffolds Based on Polyfunctional Cyclobutane βâ€Amino Acids. European Journal of Organic Chemistry, 2021, 2021, 6022-6027.	2.4	3
46	A stereoselective synthetic entry to β-substituted α-[(trans)-vinyl] phosphonamides. Tetrahedron, 2009, 65, 2451-2454.	1.9	2
47	Organobridged silsesquioxanes based on cyclobutane diamines: influence of the stereochemistry on the morphology of the materials. Tetrahedron, 2016, 72, 2913-2919.	1.9	2
48	Cyclobutane-Containing Scaffolds as Useful Intermediates in the Stereoselective Synthesis of Suitable Candidates for Biomedical Purposes: Surfactants, Gelators and Metal Cation Ligands. International Journal of Molecular Sciences, 2019, 20, 4333.	4.1	2
49	Synthesis and Gelling Abilities of Polyfunctional Cyclohexane-1,2-dicarboxylic Acid Bisamides: Influence of the Hydroxyl Groups. Molecules, 2019, 24, 352.	3.8	2
50	Synthesis, Selectivity and Structural Study of NewC3-Symmetric Tripodal Amides as Anion Receptors. An Experimental and Theoretical Approach. ChemistrySelect, 2016, 1, 1887-1892.	1.5	1
51	Reactions of a Stable (Phosphanyl)(silyl)carbene with Aliphatic Aldehydes: [2 + 1] versus [2 + 2] Addition to a Carbonyl Group ChemInform, 2003, 34, no.	0.0	0
52	Stereoselective Synthesis of Phosphoranyl Aryloxiranes Through the Addition of a Nucleophilic Stable Carbene to Aromatic Aldehydes ChemInform, 2004, 35, no.	0.0	0
53	Stereoselective synthesis of highly branched chiral cyclobutane-cored triamines and their conjugation to Gd-DOTA. Tetrahedron, 2015, 71, 8085-8095.	1.9	0