
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11442882/publications.pdf Version: 2024-02-01

LINCEALL

#	Article	IF	CITATIONS
1	High Electrochemical Performance of Monodisperse NiCo ₂ O ₄ Mesoporous Microspheres as an Anode Material for Li-Ion Batteries. ACS Applied Materials & Interfaces, 2013, 5, 981-988.	8.0	709
2	A facile route to synthesize multiporous MnCo2O4 and CoMn2O4 spinel quasi-hollow spheres with improved lithium storage properties. Nanoscale, 2013, 5, 2045.	5.6	445
3	Ultrathin δ-MnO2 nanosheets as cathode for aqueous rechargeable zinc ion battery. Electrochimica Acta, 2019, 304, 370-377.	5.2	207
4	Hollow MnCo ₂ O ₄ Submicrospheres with Multilevel Interiors: From Mesoporous Spheres to Yolk-in-Double-Shell Structures. ACS Applied Materials & Interfaces, 2014, 6, 24-30.	8.0	187
5	Uniform LiNi1/3Co1/3Mn1/3O2 hollow microspheres: Designed synthesis, topotactical structural transformation and their enhanced electrochemical performance. Nano Energy, 2013, 2, 1249-1260.	16.0	180
6	Simple synthesis of yolk-shelled ZnCo2O4 microspheres towards enhancing the electrochemical performance of lithium-ion batteries in conjunction with a sodium carboxymethyl cellulose binder. Journal of Materials Chemistry A, 2013, 1, 15292.	10.3	151
7	Spinel Mn1.5Co1.5O4 core–shell microspheres as Li-ion battery anode materials with a long cycle life and high capacity. Journal of Materials Chemistry, 2012, 22, 23254.	6.7	140
8	Mesoporous NiO ultrathin nanowire networks topotactically transformed from α-Ni(OH)2 hierarchical microspheres and their superior electrochemical capacitance properties and excellent capability for water treatment. Journal of Materials Chemistry, 2012, 22, 14276.	6.7	139
9	Catalyzing the polysulfide conversion for promoting lithium sulfur battery performances: A review. Journal of Energy Chemistry, 2021, 54, 434-451.	12.9	136
10	MnO@Carbon Core–Shell Nanowires as Stable Highâ€Performance Anodes for Lithiumâ€Ion Batteries. Chemistry - A European Journal, 2013, 19, 11310-11319.	3.3	111
11	Formation of quasi-mesocrystal ZnMn ₂ O ₄ twin microspheres via an oriented attachment for lithium-ion batteries. Journal of Materials Chemistry A, 2014, 2, 14236-14244.	10.3	89
12	The Application of Redox Targeting Principles to the Design of Rechargeable Li–S Flow Batteries. Advanced Energy Materials, 2015, 5, 1501808.	19.5	86
13	Interactions between molecules and perovskites in halide perovskite solar cells. Solar Energy Materials and Solar Cells, 2018, 175, 1-19.	6.2	66
14	A case study of β- and δ-MnO2 with different crystallographic forms on ion-storage in rechargeable aqueous zinc ion battery. Electrochimica Acta, 2019, 324, 134867.	5.2	64
15	Constructing αâ€MnO2@PPy core-shell nanorods towards enhancing electrochemical behaviors in aqueous zinc ion battery. Materials Letters, 2020, 262, 127180.	2.6	64
16	Halide Perovskite Materials for Energy Storage Applications. Advanced Functional Materials, 2020, 30, 2003653.	14.9	63
17	Porous Heteroatom-Doped Ti ₃ C ₂ T _{<i>x</i>} MXene Microspheres Enable Strong Adsorption of Sodium Polysulfides for Long-Life Room-Temperature Sodium–Sulfur Batteries. ACS Nano, 2021, 15, 16207-16217.	14.6	46
18	Adsorption of molecular additive onto lead halide perovskite surfaces: A computational study on Lewis base thiophene additive passivation. Applied Surface Science, 2018, 443, 176-183.	6.1	43

#	Article	IF	CITATIONS
19	Three-dimensional Fe3O4/carbonaceous matrix with long-life performance for high-rate lithium ion batteries. Journal of Alloys and Compounds, 2016, 688, 605-610.	5.5	39
	General synthesis of xLi ₂ MnO ₃ ·(1 â^') Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 712 Td (
20	microspheres towards enhancing the performance of rechargeable lithium ion batteries. Journal of Materials Chemistry A, 2016, 4, 12442-12450.	10.3	38
21	Data mining new energy materials from structure databases. Renewable and Sustainable Energy Reviews, 2019, 107, 554-567.	16.4	38
22	First-Principles Study of Molecular Adsorption on Lead Iodide Perovskite Surface: A Case Study of Halogen Bond Passivation for Solar Cell Application. Journal of Physical Chemistry C, 2016, 120, 23536-23541.	3.1	37
23	A precursor route to synthesize mesoporous γ-MnO2 microcrystals and their applications in lithium battery and water treatment. Journal of Alloys and Compounds, 2011, 509, 9542-9548.	5.5	33
24	Multilayer Dye Aggregation at Dye/TiO2 Interface via π…π Stacking and Hydrogen Bond and Its Impact on Solar Cell Performance: A DFT Analysis. Scientific Reports, 2016, 6, 35893.	3.3	30
25	Double-edged sword effects of cation rotation and additive passivation on perovskite solar cell performance: an ab initio investigation. Solar Energy Materials and Solar Cells, 2018, 186, 349-355.	6.2	29
26	Effect of Ni content in Ni Mn1-CO3 (xÂ= 0, 0.20, 0.25, 0.33) submicrospheres on the performances of rechargeable lithium ion batteries. Electrochimica Acta, 2018, 276, 333-342.	5.2	28
27	MnCO3 Microstructures Assembled with Nanoparticles: Shape-Controlled Synthesis and Their Application for Li-Ion Batteries. Journal of Nanoscience and Nanotechnology, 2012, 12, 7334-7338.	0.9	27
28	Combined mediator and electrochemical charging and discharging of redox targeting lithium-sulfur flow batteries. Materials Today Energy, 2017, 5, 15-21.	4.7	24
29	Recent Progress and Challenges of Microâ€∤Nanostructured Transition Metal Carbonate Anodes for Lithium Ion Batteries. European Journal of Inorganic Chemistry, 2018, 2018, 4508-4521.	2.0	23
30	Understanding interactions between halide perovskite surfaces and atmospheric/VOC gas molecules: an ab initio investigation. Journal Physics D: Applied Physics, 2018, 51, 315302.	2.8	23
31	Molecular Engineering of the Lead Iodide Perovskite Surface: Case Study on Molecules with Pyridyl Groups. Journal of Physical Chemistry C, 2017, 121, 24612-24617.	3.1	20
32	Surfacing amorphous Ni–B nanoflakes on NiCo ₂ O ₄ nanospheres as multifunctional bridges for promoting lithium storage behaviors. Nanoscale, 2019, 11, 22550-22558.	5.6	20
33	Hybridized S cathode with N719 dye for a photo-assisted charging Li-S battery. Journal of Energy Chemistry, 2022, 65, 205-209.	12.9	18
34	Engineering Zn _{0.33} Co _{0.67} S Hollow Microspheres with Enhanced Electrochemical Performance for Lithium and Sodium Ion Batteries. European Journal of Inorganic Chemistry, 2018, 2018, 3036-3040.	2.0	16
35	Promoting the Na+-storage of NiCo2S4 hollow nanospheres by surfacing Ni–B nanoflakes. Journal of Materials Science and Technology, 2021, 82, 114-121.	10.7	16
36	Dual-functional iodine photoelectrode enabling high performance photo-assisted rechargeable lithium iodine batteries. Journal of Materials Chemistry A, 2022, 10, 7326-7332.	10.3	15

#	Article	IF	CITATIONS
37	Theoretical investigations on crystal crosslinking in perovskite solar cells. Journal of Materials Chemistry C, 2018, 6, 234-241.	5.5	14
38	Theoretical investigation on interactions between lithium ions and two-dimensional halide perovskite for solar-rechargeable batteries. Applied Surface Science, 2021, 541, 148509.	6.1	14
39	Construction of S@TiO ₂ @râ€GO Composites for Highâ€Performance Lithium–Sulfur Batteries. European Journal of Inorganic Chemistry, 2017, 2017, 3248-3252.	2.0	12
40	Molecular engineering lithium sulfur battery cathode based on small organic molecules: An ab-initio investigation. Applied Surface Science, 2019, 484, 1184-1190.	6.1	12
41	Hierarchical Porous Carbon Derived from Peanut Hull for Polysulfide Confinement in Lithium–Sulfur Batteries. Energy Technology, 2019, 7, 1800898.	3.8	11
42	Core-shell MgFe2O4@C nano-composites derived via thermal decomposition-reduction dual strategy for superior lithium storage. Journal of Alloys and Compounds, 2020, 834, 155207.	5.5	11
43	Understanding Interactions between Lead Iodide Perovskite Surfaces and Lithium Polysulfide toward New-Generation Integrated Solar-Powered Lithium Battery: An ab Initio Investigation. Journal of Physical Chemistry C, 2019, 123, 82-90.	3.1	10
44	Solvothermal Synthesis of 3D BiOCl Microstructures and Their Electrochemical Hydrogen Storage Behavior. Journal of Nanoscience and Nanotechnology, 2012, 12, 2068-2075.	0.9	6
45	Design of micro-nanostructured Mn2O3@CNTs with long cycling for lithium-ion storage. Journal of Materials Science: Materials in Electronics, 2018, 29, 4675-4682.	2.2	6
46	Adsorption and diffusion of lithium ions on <scp>leadâ€free twoâ€dimensional</scp> halide perovskite surface toward energy storage applications. International Journal of Energy Research, 2021, 45, 16524-16537.	4.5	6
47	Understanding structures and properties of phosphorene/perovskite heterojunction toward perovskite solar cell applications. Journal of Molecular Graphics and Modelling, 2019, 89, 96-101.	2.4	5
48	Controlling directions of electron flow by light: A case study on TiO2 film with azo dyes. Dyes and Pigments, 2019, 161, 277-282.	3.7	5
49	Photoelectrochemical and first-principles investigation on halide perovskite/TiO2 film improved by dicyano dye. Optical Materials, 2020, 109, 110350.	3.6	5
50	Mn3(PO4)2/rGO as dual-function polysulfide inhibitor through oxygen deficiencies and polar sites for lithium sulfur batteries. Applied Surface Science, 2020, 521, 146425.	6.1	5
51	Cadmium sulfide rod-bundle structures decorated with nanoparticles from an inorganic/organic composite. Journal of Nanoparticle Research, 2011, 13, 3535-3543.	1.9	4
52	Surface engineering Co–B nanoflakes on Mn0.33Co0.67CO3 microspheres as multifunctional bridges towards facilitating Li+ storing performance. Ceramics International, 2020, 46, 19873-19879.	4.8	4
53	Terahertz investigations on photoisomerisable compounds. Molecular Physics, 2017, 115, 2486-2494.	1.7	2
54	Evaluation of Hybrid Anode Usability in Lithium Polysulfide Flow Batteries. Energy Technology, 2017, 5, 2072-2077.	3.8	2

#	Article	IF	CITATIONS
55	Engineering Naâ^'Moâ^'O/Graphene Oxide Composites with Enhanced Electrochemical Performance for Lithium Ion Batteries. ChemistryOpen, 2019, 8, 1225-1229.	1.9	2
56	Experimental and first principles investigations on the photoisomerization and electrochemical properties of chlorophosphonazo III. Journal of Molecular Structure, 2019, 1180, 151-157.	3.6	2
57	Structures and Properties of Higher-Degree Aggregates of Methylammonium Iodide toward Halide Perovskite Solar Cells. Russian Journal of Physical Chemistry A, 2019, 93, 2250-2255.	0.6	1
58	Structures and Properties of Methylammonium Iodide Precursors of Halide Perovskites and Implications for Solar Cells: an Ab-Initio Investigation. Russian Journal of Physical Chemistry A, 2019, 93, 2694-2698.	0.6	1
59	Understanding photoresponsive catechol-based polyoxotitanate molecules: A combined experimental and first principles investigation. Chemical Physics Letters, 2019, 715, 217-221.	2.6	1
60	Intermolecular Interactions of Hybrid Organic Dyes Based on Coumarin 343 for Optoelectronic Applications. Russian Journal of Physical Chemistry A, 2019, 93, 2542-2549.	0.6	0