
## Jiangquan Mai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11442065/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | A Facile Planar Fused-Ring Electron Acceptor for As-Cast Polymer Solar Cells with 8.71% Efficiency.<br>Journal of the American Chemical Society, 2016, 138, 2973-2976.                                                            | 13.7 | 885       |
| 2  | A spirobifluorene and diketopyrrolopyrrole moieties based non-fullerene acceptor for efficient and<br>thermally stable polymer solar cells with high open-circuit voltage. Energy and Environmental<br>Science, 2016, 9, 604-610. | 30.8 | 347       |
| 3  | Hidden Structure Ordering Along Backbone of Fusedâ€Ring Electron Acceptors Enhanced by Ternary<br>Bulk Heterojunction. Advanced Materials, 2018, 30, e1802888.                                                                    | 21.0 | 212       |
| 4  | Understanding Morphology Compatibility for High-Performance Ternary Organic Solar Cells.<br>Chemistry of Materials, 2016, 28, 6186-6195.                                                                                          | 6.7  | 150       |
| 5  | Molecular Lock: A Versatile Key to Enhance Efficiency and Stability of Organic Solar Cells. Advanced<br>Materials, 2016, 28, 5822-5829.                                                                                           | 21.0 | 134       |
| 6  | Fusedâ€Ring Electron Acceptor ITICâ€Th: A Novel Stabilizer for Halide Perovskite Precursor Solution.<br>Advanced Energy Materials, 2018, 8, 1703399.                                                                              | 19.5 | 112       |
| 7  | Energy-level modulation of non-fullerene acceptors to achieve high-efficiency polymer solar cells at<br>a diminished energy offset. Journal of Materials Chemistry A, 2017, 5, 9649-9654.                                         | 10.3 | 83        |
| 8  | High efficiency ternary organic solar cell with morphology-compatible polymers. Journal of<br>Materials Chemistry A, 2017, 5, 11739-11745.                                                                                        | 10.3 | 74        |
| 9  | Electron acceptors with varied linkages between perylene diimide and benzotrithiophene for efficient<br>fullerene-free solar cells. Journal of Materials Chemistry A, 2017, 5, 9396-9401.                                         | 10.3 | 60        |
| 10 | Improved photon-to-electron response of ternary blend organic solar cells with a low band gap polymer sensitizer and interfacial modification. Journal of Materials Chemistry A, 2016, 4, 1702-1707.                              | 10.3 | 45        |
| 11 | Rhodanine flanked indacenodithiophene as non-fullerene acceptor for efficient polymer solar cells.<br>Science China Chemistry, 2017, 60, 257-263.                                                                                 | 8.2  | 42        |
| 12 | Conjugated Polymers Based on Difluorobenzoxadiazole toward Practical Application of Polymer<br>Solar Cells. Advanced Energy Materials, 2017, 7, 1702033.                                                                          | 19.5 | 39        |
| 13 | Molecular Packing and Electronic Processes in Amorphous-like Polymer Bulk Heterojunction Solar<br>Cells with Fullerene Intercalation. Scientific Reports, 2014, 4, 5211.                                                          | 3.3  | 32        |
| 14 | Ternary morphology facilitated thick-film organic solar cell. RSC Advances, 2015, 5, 88500-88507.                                                                                                                                 | 3.6  | 27        |
| 15 | Hydrocarbonsâ€Driven Crystallization of Polymer Semiconductors for Lowâ€Temperature Fabrication of<br>Highâ€Performance Organic Fieldâ€Effect Transistors. Advanced Functional Materials, 2018, 28, 1706372.                      | 14.9 | 23        |
| 16 | Electrostatic Force–Driven Oxide Heteroepitaxy for Interface Control. Advanced Materials, 2018, 30, e1707017.                                                                                                                     | 21.0 | 23        |
| 17 | Enhancing Efficiency and Stability of Organic Solar Cells by UV Absorbent. Solar Rrl, 2017, 1, 1700148.                                                                                                                           | 5.8  | 21        |
| 18 | Broadband plasmon-enhanced polymer solar cells with power conversion efficiency of 9.26% using mixed Au nanoparticles. Optics Communications, 2016, 362, 50-58.                                                                   | 2.1  | 15        |

Jiangquan Mai

| #  | Article                                                                                                                                                                          | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | A-D-A small molecule donors based on pyrene and diketopyrrolopyrrole for organic solar cells.<br>Science China Chemistry, 2017, 60, 561-569.                                     | 8.2 | 15        |
| 20 | Influence of Donor–Acceptor Arrangement on Charge Transport in Conjugated Copolymers. Journal of Physical Chemistry C, 2014, 118, 5600-5605.                                     | 3.1 | 10        |
| 21 | Poly(sodium 4-styrenseulfonate)-modified monolayer graphene for anode applications of organic photovoltaic cells. Applied Physics Letters, 2017, 111, .                          | 3.3 | 10        |
| 22 | In Situ Probing of the Charge Transport Process at the Polymer/Fullerene Heterojunction Interface.<br>Journal of Physical Chemistry C, 2015, 119, 25598-25605.                   | 3.1 | 5         |
| 23 | New Route for Fabrication of High-Quality Zn(S,O) Buffer Layer at High Deposition Temperature on Cu(In,Ga)Se\$_2\$ Solar Cells. IEEE Journal of Photovoltaics, 2017, 7, 651-655. | 2.5 | 5         |