Carlos Alberto Mandarim-De-Lacerda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11441792/publications.pdf

Version: 2024-02-01

32 papers 1,209 citations

331670 21 h-index 31 g-index

32 all docs 32 docs citations

32 times ranked 1841 citing authors

#	Article	IF	Citations
1	Obese mice weight loss role on nonalcoholic fatty liver disease and endoplasmic reticulum stress treated by a GLP-1 receptor agonist. International Journal of Obesity, 2022, 46, 21-29.	3.4	26
2	Intermittent fasting, high-intensity interval training, or a combination of both have beneficial effects in obese mice with nonalcoholic fatty liver disease. Journal of Nutritional Biochemistry, 2022, 104, 108997.	4.2	8
3	Maternal swimming mitigates liver damage caused by paternal obesity. Nutrition, 2021, 86, 111168.	2.4	2
4	The acute schistosomiasis mansoni ameliorates metabolic syndrome in the C57BL/6 mouse model. Experimental Parasitology, 2020, 212, 107889.	1.2	9
5	Vitamin D Deficiency Increases Lipogenesis and Reduces Beta-Oxidation in the Liver of Diet-Induced Obese Mice. Journal of Nutritional Science and Vitaminology, 2018, 64, 106-115.	0.6	28
6	A rich medium-chain triacylglycerol diet benefits adiposity but has adverse effects on the markers of hepatic lipogenesis and beta-oxidation. Food and Function, 2017, 8, 778-787.	4.6	20
7	Anti-obesogenic effects of WY14643 (PPAR-alpha agonist): Hepatic mitochondrial enhancement and suppressed lipogenic pathway in diet-induced obese mice. Biochimie, 2017, 140, 106-116.	2.6	48
8	Tips for Studies with Quantitative Morphology (Morphometry and Stereology). International Journal of Morphology, 2017, 35, 1482-1494.	0.2	34
9	NAFLD e Ingesta de Fructosa en Altas concentraciones: Una RevisiÃ ³ n de la Literatura. International Journal of Morphology, 2017, 35, 676-683.	0.2	1
10	Mice fed fish oil diet and upregulation of brown adipose tissue thermogenic markers. European Journal of Nutrition, 2016, 55, 159-169.	3.9	88
11	Oral isotretinoin in photoaging: objective histological evidence of efficacy and durability. Anais Brasileiros De Dermatologia, 2015, 90, 479-486.	1.1	19
12	A high-fish-oil diet prevents adiposity and modulates white adipose tissue inflammation pathways in mice. Journal of Nutritional Biochemistry, 2015, 26, 960-969.	4.2	42
13	Singular effects of PPAR agonists on nonalcoholic fatty liver disease of diet-induced obese mice. Life Sciences, 2015, 127, 73-81.	4.3	36
14	PPARâ€Î± agonist elicits metabolically active brown adipocytes and weight loss in dietâ€induced obese mice. Cell Biochemistry and Function, 2015, 33, 249-256.	2.9	44
15	Early hepatic insult in the offspring of obese maternal mice. Nutrition Research, 2015, 35, 136-145.	2.9	23
16	Pregestational maternal obesity impairs endocrine pancreas in male F1 and F2 progeny. Nutrition, 2015, 31, 380-387.	2.4	43
17	Programming of Obesity and Comorbidities in the Progeny: Lessons from a Model of Diet-Induced Obese Parents. PLoS ONE, 2015, 10, e0124737.	2.5	56
18	Pleiotropic effects of rosuvastatin on the glucose metabolism and the subcutaneous and visceral adipose tissue behavior in C57Bl/6 mice. Diabetology and Metabolic Syndrome, 2013, 5, 32.	2.7	23

#	Article	IF	CITATIONS
19	Maternal high-fat diet is associated with altered pancreatic remodelling in mice offspring. European Journal of Nutrition, 2013, 52, 759-769.	3.9	30
20	Adverse association between obesity and menopause in mice treated with bezafibrate, a pan peroxisome proliferator–activated receptor agonist. Menopause, 2013, 20, 1264-1274.	2.0	7
21	Peroxisome Proliferator-Activated Receptors-Alpha and Gamma Are Targets to Treat Offspring from Maternal Diet-Induced Obesity in Mice. PLoS ONE, 2013, 8, e64258.	2.5	66
22	Quantitative Morphology Update: Image Analysis. International Journal of Morphology, 2013, 31, 23-30.	0.2	9
23	Maternal High-Fat Diet Programs for Metabolic Disturbances in Offspring despite Leptin Sensitivity. Neuroendocrinology, 2012, 96, 272-284.	2.5	50
24	Modulation of cytokines, resistin, and distribution of adipose tissue in C57BL/6 mice by different high-fat diets. Nutrition, 2012, 28, 212-219.	2.4	65
25	A critical analysis of three quantitative methods of assessment of hepatic steatosis in liver biopsies. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2011, 459, 477-485.	2.8	112
26	Maternal protein restriction in mice causes adverse metabolic and hypothalamic effects in the F1 and F2 generations. British Journal of Nutrition, 2011, 106, 1364-1373.	2.3	41
27	Image Analysis and Quantitative Morphology. Methods in Molecular Biology, 2010, 611, 211-225.	0.9	77
28	Pan-PPAR agonist beneficial effects in overweight mice fed a high-fat high-sucrose diet. Nutrition, 2009, 25, 818-827.	2.4	61
29	Rosiglitazone Aggravates Nonalcoholic Fatty Pancreatic Disease in C57BL/6 Mice Fed High-Fat and High-Sucrose Diet. Pancreas, 2009, 38, e80-e86.	1.1	48
30	Long-term feeding a high-fat diet causes histological and parasitological effects on murine schistosomiasis mansoni outcome. Experimental Parasitology, 2007, 115, 324-332.	1.2	21
31	Dietary effect of different high-fat diet on rat liver stereology. Liver International, 2003, 23, 363-370.	3.9	50
32	Vitamina C. Anais Brasileiros De Dermatologia, 2003, 78, 265-272.	1.1	22