Marwa I Wahba

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/114407/publications.pdf Version: 2024-02-01

ΜλανιλΙλλήμαλ

#	Article	IF	CITATIONS
1	Enhancement of the mechanical properties of chitosan. Journal of Biomaterials Science, Polymer Edition, 2020, 31, 350-375.	3.5	47
2	Porous chitosan beads of superior mechanical properties for the covalent immobilization of enzymes. International Journal of Biological Macromolecules, 2017, 105, 894-904.	7.5	46
3	Treated calcium pectinate beads for the covalent immobilization of β- d -galactosidase. International Journal of Biological Macromolecules, 2016, 91, 877-886.	7.5	36
4	Functionalized κ-carrageenan/hyperbranched poly(amidoamine)for protease immobilization: Thermodynamics and stability studies. International Journal of Biological Macromolecules, 2020, 148, 1140-1155.	7.5	33
5	Agar-carrageenan hydrogel blend as a carrier for the covalent immobilization of β-D-galactosidase. Macromolecular Research, 2017, 25, 913-923.	2.4	30
6	Novel grafted agar disks for the covalent immobilization of βâ€Đâ€galactosidase. Biopolymers, 2015, 103, 675-684.	2.4	27
7	Sodium bicarbonateâ€gelled chitosan beads as mechanically stable carriers for the covalent immobilization of enzymes. Biotechnology Progress, 2018, 34, 347-361.	2.6	17
8	Development of carrageenan modified with nanocellulose-based materials in removing of Cu2+, Pb2+, Ca2+, Mg2+, and Fe2+. International Journal of Environmental Science and Technology, 2019, 16, 5569-5576.	3.5	17
9	Bioscouring of wool fibres using immobilized thermophilic lipase. International Journal of Biological Macromolecules, 2022, 194, 800-810.	7.5	17
10	Processed gellan gum beads as covalent immobilization carriers. Biocatalysis and Agricultural Biotechnology, 2018, 14, 270-278.	3.1	14
11	Chitosan-glutaraldehyde activated calcium pectinate beads as a covalent immobilization support. Biocatalysis and Agricultural Biotechnology, 2017, 12, 266-274.	3.1	13
12	Application of Plackett–Burman screening design to the modeling of grafted alginate–carrageenan beads for the immobilization of penicillin G acylase. Journal of Applied Polymer Science, 2014, 131, .	2.6	11
13	Whey protein isolate for the preparation of covalent immobilization beads. Biocatalysis and Agricultural Biotechnology, 2018, 14, 328-337.	3.1	11
14	Mechanically stable egg white protein based immobilization carrier for Î ² -D-galactosidase: Thermodynamics and application in whey lactose hydrolysis. Reactive and Functional Polymers, 2020, 155, 104696.	4.1	10
15	Chitosan-glutaraldehyde activated carrageenan-alginate beads for \hat{I}^2 -D-galactosidase covalent immobilisation. Biocatalysis and Biotransformation, 2021, 39, 138-151.	2.0	9
16	Carrageenan stabilized calcium pectinate beads and their utilization as immobilization matrices. Biocatalysis and Agricultural Biotechnology, 2021, 35, 102078.	3.1	9
17	Soy protein isolate for enzymes bio-conjugation. Biocatalysis and Agricultural Biotechnology, 2022, 43, 102390.	3.1	5
18	Thermostabilization of <i>Aspergillus oryzae</i> βâ€ <scp>d</scp> â€galactosidase. Biotechnology and Applied Biochemistry, 2016, 63, 546-552.	3.1	4

MARWA I WAHBA

#	Article	lF	CITATIONS
19	Calcium pectinate-agar beads as improved carriers for β-d-galactosidase and their thermodynamics investigation. 3 Biotech, 2020, 10, 356.	2.2	3
20	Immobilization impact of GEG-Alg-SPI as a carrier for Aspergillus niger MK981235 inulinase: Kinetics, thermodynamics, and application. Bioresource Technology Reports, 2022, 18, 101099.	2.7	3
21	Stabilization of <i>Arthrobacter viscosus</i> Penicillin G Acylase. Journal of Colloid Science and Biotechnology, 2013, 2, 315-321.	0.2	1
22	Recent Insights on Chitosan's Applications. Egyptian Journal of Chemistry, 2019, .	0.2	0