
Fred W Allendorf

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11440406/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cryptic inbreeding depression in a growing population of a longâ€ŀived species. Molecular Ecology, 2017, 26, 799-813.	2.0	30
2	Population Genetics and Demography Unite Ecology and Evolution. Trends in Ecology and Evolution, 2017, 32, 141-152.	4.2	94
3	Legacy introductions and climatic variation explain spatiotemporal patterns of invasive hybridization in a native trout. Global Change Biology, 2017, 23, 4663-4674.	4.2	71
4	Unbroken: RADseq remains a powerful tool for understanding the genetics of adaptation in natural populations. Molecular Ecology Resources, 2017, 17, 362-365.	2.2	156
5	Genetics and the conservation of natural populations: allozymes to genomes. Molecular Ecology, 2017, 26, 420-430.	2.0	260
6	Sexâ€biased dispersal and spatial heterogeneity affect landscape resistance to gene flow in fisher. Ecosphere, 2017, 8, e01839.	1.0	17
7	Vive la résistance: genome-wide selection against introduced alleles in invasive hybrid zones. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20161380.	1.2	40
8	Genomics advances the study of inbreeding depression in the wild. Evolutionary Applications, 2016, 9, 1205-1218.	1.5	200
9	Population genetic structure and disease in montane boreal toads: more heterozygous individuals are more likely to be infected with amphibian chytrid. Conservation Genetics, 2015, 16, 833-844.	0.8	18
10	Spatial sorting promotes the spread of maladaptive hybridization. Trends in Ecology and Evolution, 2015, 30, 456-462.	4.2	48
11	Valid estimates of individual inbreeding coefficients from marker-based pedigrees are not feasible in wild populations with low allelic diversity. Conservation Genetics, 2015, 16, 901-913.	0.8	25
12	Dispersal and selection mediate hybridization between a native and invasive species. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20142454.	1.2	61
13	So long to genetic diversity, and thanks for all the fish. Molecular Ecology, 2014, 23, 23-25.	2.0	45
14	Samples from subdivided populations yield biased estimates of effective size that overestimate the rate of loss of genetic variation. Molecular Ecology Resources, 2014, 14, 87-99.	2.2	46
15	Invasive hybridization in a threatened species is accelerated by climate change. Nature Climate Change, 2014, 4, 620-624.	8.1	233
16	Evaluating the role of inbreeding depression in heterozygosityâ€fitness correlations: how useful are tests for identity disequilibrium?. Molecular Ecology Resources, 2014, 14, 519-530.	2.2	46
17	How much gene flow is needed to avoid inbreeding depression in wild tiger populations?. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20133337.	1.2	59
18	Genomic patterns of introgression in rainbow and westslope cutthroat trout illuminated by overlapping pairedâ€end RAD sequencing. Molecular Ecology, 2013, 22, 3002-3013.	2.0	162

#	Article	IF	CITATIONS
19	Genetic consequences of a century of protection: serial founder events and survival of the little spotted kiwi (<i>Apteryx owenii</i>). Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20130576.	1.2	25
20	Breed Locally, Disperse Globally: Fine-Scale Genetic Structure Despite Landscape-Scale Panmixia in a Fire-Specialist. PLoS ONE, 2013, 8, e67248.	1.1	20
21	Harnessing genomics for delineating conservation units. Trends in Ecology and Evolution, 2012, 27, 489-496.	4.2	767
22	How does the 50/500 rule apply to MVPs?. Trends in Ecology and Evolution, 2012, 27, 578-584.	4.2	259
23	Near absence of hybridization between sauger and introduced walleye despite massive releases. Conservation Genetics, 2012, 13, 509-523.	0.8	7
24	RAD sequencing yields a high success rate for westslope cutthroat and rainbow trout speciesâ€diagnostic SNP assays. Molecular Ecology Resources, 2012, 12, 653-660.	2.2	64
25	Nextâ€generation RAD sequencing identifies thousands of SNPs for assessing hybridization between rainbow and westslope cutthroat trout. Molecular Ecology Resources, 2011, 11, 117-122.	2.2	323
26	Genetic structure and individual performance following a recent founding event in a small lizard. Conservation Genetics, 2011, 12, 461-473.	0.8	8
27	Promoting collaboration between livestock and wildlife conservation genetics communities. Conservation Genetics Resources, 2011, 3, 785-788.	0.4	32
28	Genetic diversity and taxonomy: a reassessment of species designation in tuatara (Sphenodon: Reptilia). Conservation Genetics, 2010, 11, 1063-1081.	0.8	73
29	Estimation of census and effective population sizes: the increasing usefulness of DNA-based approaches. Conservation Genetics, 2010, 11, 355-373.	0.8	444
30	Genetic variation and effective population size in isolated populations of coastal cutthroat trout. Conservation Genetics, 2010, 11, 1929-1943.	0.8	79
31	What can genetics tell us about population connectivity?. Molecular Ecology, 2010, 19, 3038-3051.	2.0	738
32	Genomics and the future of conservation genetics. Nature Reviews Genetics, 2010, 11, 697-709.	7.7	1,181
33	Human-induced evolution caused by unnatural selection through harvest of wild animals. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 9987-9994.	3.3	433
34	Importance of Genetics in the Interpretation of Favourable Conservation Status. Conservation Biology, 2009, 23, 1378-1381.	2.4	40
35	Hybridization rapidly reduces fitness of a native trout in the wild. Biology Letters, 2009, 5, 328-331.	1.0	254
36	Genetic effects of harvest on wild animal populations. Trends in Ecology and Evolution, 2008, 23, 327-337.	4.2	495

#	Article	IF	CITATIONS
37	Rainbow trout (<i>Oncorhynchus mykiss</i>) invasion and the spread of hybridization with native westslope cutthroat trout (<i>Oncorhynchus clarkii lewisi</i>). Canadian Journal of Fisheries and Aquatic Sciences, 2008, 65, 658-669.	0.7	98
38	Identification of management units using population genetic data. Trends in Ecology and Evolution, 2007, 22, 11-16.	4.2	800
39	Can common species provide valuable information for conservation?. Molecular Ecology, 2006, 15, 2767-2786.	2.0	46
40	Fineâ€Scale Genetic Structure of Bull Trout at the Southern Limit of Their Distribution. Transactions of the American Fisheries Society, 2006, 135, 1238-1253.	0.6	36
41	Cutthroat Trout Hybridization and the U.S. Endangered Species Act: One Species, Two Policies. Conservation Biology, 2005, 19, 1326-1328.	2.4	42
42	Ecological and life history characteristics predict population genetic divergence of two salmonids in the same landscape. Molecular Ecology, 2004, 13, 3675-3688.	2.0	76
43	Intercrosses and the U.S. Endangered Species Act: Should Hybridized Populations be Included as Westslope Cutthroat Trout?. Conservation Biology, 2004, 18, 1203-1213.	2.4	157
44	Introduction: Population Biology, Evolution, and Control of Invasive Species. Conservation Biology, 2003, 17, 24-30.	2.4	666
45	Spread of hybridization between native westslope cutthroat trout, Oncorhynchus clarki lewisi, and nonnative rainbow trout, Oncorhynchus mykiss. Canadian Journal of Fisheries and Aquatic Sciences, 2003, 60, 1440-1451.	0.7	138
46	Molecular Genetic Markers Identifying Hybridization between the Colorado River-Greenback Cutthroat Trout Complex and Yellowstone Cutthroat Trout or Rainbow Trout. Transactions of the American Fisheries Society, 2002, 131, 312-319.	0.6	31
47	Evidence of Introgressive Hybridization between Bull Trout and Brook Trout. Transactions of the American Fisheries Society, 2002, 131, 772-782.	0.6	63
48	The problems with hybrids: setting conservation guidelines. Trends in Ecology and Evolution, 2001, 16, 613-622.	4.2	1,454
49	Genetic Population Structure of Bull Trout from the Flathead River Basin as Shown by Microsatellites and Mitochondrial DNA Markers. Transactions of the American Fisheries Society, 2001, 130, 92-106.	0.6	18
50	Small effective population size in the long-toed salamander. Molecular Ecology, 1999, 8, 1633-1640.	2.0	61
51	Temporal Changes in Allele Frequencies Provide Estimates of Population Bottleneck Size. Conservation Biology, 1999, 13, 523-530.	2.4	82
52	Notes: Genetic Confirmation of Sympatric Bull Trout and Dolly Varden in Western Washington. Transactions of the American Fisheries Society, 1997, 126, 715-720.	0.6	15
53	Prioritizing Pacific Salmon Stocks for Conservation. Priorizacion de Stocks de Salmones del Pacifico para su Conservacion. Conservation Biology, 1997, 11, 140-152.	2.4	162
54	The One-Migrant-per-Generation Rule in Conservation and Management. Conservation Biology, 1996, 10, 1509-1518.	2.4	682

#	Article	IF	CITATIONS
55	Conservation and Genetics of Salmonid Fishes. , 1996, , 238-280.		204
56	When Are Peripheral Populations Valuable for Conservation?. Conservation Biology, 1995, 9, 753-760.	2.4	876
57	Sex-linkage of two enzyme loci in Oncorhyncus mykiss (rainbow trout). Heredity, 1994, 72, 498-507.	1.2	49
58	Null alleles at two lactate dehydrogenase loci in rainbow trout are associated with decreased developmental stability. Contemporary Issues in Genetics and Evolution, 1994, , 5-15.	0.9	2
59	Null alleles at two lactate dehydrogenase loci in rainbow trout are associated with decreased developmental stability. Genetica, 1993, 89, 3-13.	0.5	25
60	Conservation Genetics of Bull Trout in the Columbia and Klamath River Drainages. Conservation Biology, 1993, 7, 856-865.	2.4	141
61	Are Small Populations of Plants Worth Preserving?. Conservation Biology, 1992, 6, 135-139.	2.4	95
62	Genetic analysis of androgenetic rainbow trout. The Journal of Experimental Zoology, 1991, 260, 382-390.	1.4	115
63	Gene Nomenclature for Protein-Coding Loci in Fish. Transactions of the American Fisheries Society, 1990, 119, 2-15.	0.6	749
64	Fluctuating asymmetry as an indicator of stress: Implications for conservation biology. Trends in Ecology and Evolution, 1989, 4, 214-217.	4.2	575
65	Genetically Effective Population Size of Large Mammals: An Assessment of Estimators. Conservation Biology, 1989, 3, 181-191.	2.4	123
66	Conservation and Distribution of Genetic Variation in a Polytypic Species, the Cutthroat Trout. Conservation Biology, 1988, 2, 170-184.	2.4	339
67	Developmental success of hybrids between two taxa of salmonid fishes with moderate structural gene divergence. Canadian Journal of Zoology, 1988, 66, 1389-1395.	0.4	22
68	Conservation Biology of Fishes. Conservation Biology, 1988, 2, 145-148.	2.4	56
69	Genetic Divergence and Identification of Seven Cutthroat Trout Subspecies and Rainbow Trout. Transactions of the American Fisheries Society, 1987, 116, 580-587.	0.6	66
70	Genetic Identification of Cutthroat Trout, Salmo clarki, in Glacier National Park, Montana. Canadian Journal of Fisheries and Aquatic Sciences, 1987, 44, 1830-1839.	0.7	28
71	Protein variation, fitness, and captive propagation. Zoo Biology, 1986, 5, 91-99.	0.5	87
72	Genetic drift and the loss of alleles versus heterozygosity. Zoo Biology, 1986, 5, 181-190.	0.5	682

#	Article	IF	CITATIONS
73	INHERITANCE OF MERISTIC VARIATION AND THE EVOLUTION OF DEVELOPMENTAL STABILITY IN RAINBOW TROUT. Evolution; International Journal of Organic Evolution, 1985, 39, 308-314.	1.1	123
74	DEVELOPMENTAL INSTABILITY AND HIGH MERISTIC COUNTS IN INTERSPECIFIC HYBRIDS OF SALMONID FISHES. Evolution; International Journal of Organic Evolution, 1985, 39, 1318-1326.	1.1	107
75	Absence of developmental incompatibility in hybrids between rainbow trout and two subspecies of cutthroat trout. Biochemical Genetics, 1985, 23, 557-570.	0.8	29
76	Heterozygosity and developmental stability in gynogenetic diploid and triploid rainbow trout. Heredity, 1985, 54, 219-225.	1.2	91
77	Developmental Instability and High Meristic Counts in Interspecific Hybrids of Salmonid Fishes. Evolution; International Journal of Organic Evolution, 1985, 39, 1318.	1.1	51
78	Developmental divergence among hatchery strains of rainbow trout (Salmo gairdneri). II. Hybrids. Genome, 1985, 27, 298-307.	0.7	11
79	Developmental Instability as an Indicator of Reduced Genetic Variation in Hatchery Trout. Transactions of the American Fisheries Society, 1985, 114, 230-235.	0.6	77
80	INTROGRESSION BETWEEN TWO CUTTHROAT TROUT SUBSPECIES WITH SUBSTANTIAL KARYOTYPIC, NUCLEAR AND MITOCHONDRIAL GENOMIC DIVERGENCE. Genetics, 1985, 111, 905-915.	1.2	51
81	Tetraploidy and the Evolution of Salmonid Fishes. , 1984, , 1-53.		522
82	Superior Developmental Stability of Heterozygotes at Enzyme Loci in Salmonid Fishes. American Naturalist, 1984, 124, 540-551.	1.0	200
83	Genetic Identity of Pallid and Shovelnose Sturgeon (Scaphirhynchus albus and S. platorynchus). Copeia, 1983, 1983, 696.	1.4	45
84	Consistently High Meristic Counts in Natural Hybrids Between Brook Trout and Bull Trout. Systematic Zoology, 1983, 32, 369.	1.6	43
85	Use of Allelic Frequencies to Describe Population Structure. Canadian Journal of Fisheries and Aquatic Sciences, 1981, 38, 1507-1514.	0.7	342
86	Loss of Genetic Variation in a Hatchery Stock of Cutthroat Trout. Transactions of the American Fisheries Society, 1980, 109, 537-543.	0.6	318