Joshua T Maxwell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1143921/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	<i>In vivo</i> evaluation of bioprinted cardiac patches composed of cardiac-specific extracellular matrix and progenitor cells in a model of pediatric heart failure. Biomaterials Science, 2022, 10, 444-456.	5.4	12
2	Loss of cardiac myosin light chain kinase contributes to contractile dysfunction in right ventricular pressure overload. Physiological Reports, 2022, 10, e15238.	1.7	1
3	Carfilzomib Treatment Causes Molecular and Functional Alterations of Human Induced Pluripotent Stem Cell–Derived Cardiomyocytes. Journal of the American Heart Association, 2021, 10, e022247.	3.7	15
4	Predicting Functional Responses of Progenitor Cell Exosome Potential with Computational Modeling. Stem Cells Translational Medicine, 2019, 8, 1212-1221.	3.3	18
5	Electrical Stimulation of pediatric cardiac-derived c-kit+ progenitor cells improves retention and cardiac function in right ventricular heart failure. Stem Cells, 2019, 37, 1528-1541.	3.2	9
6	Aggregation of Child Cardiac Progenitor Cells Into Spheres Activates Notch Signaling and Improves Treatment of Right Ventricular Heart Failure. Circulation Research, 2019, 124, 526-538.	4.5	36
7	Analyses of Mitochondrial Calcium Influx in Isolated Mitochondria and Cultured Cells. Journal of Visualized Experiments, 2018, , .	0.3	12
8	Targeted Elimination of Tumorigenic Human Pluripotent Stem Cells Using Suicide-Inducing Virus-like Particles. ACS Chemical Biology, 2018, 13, 2329-2338.	3.4	15
9	The mitochondrial calcium uniporter underlies metabolic fuel preference in skeletal muscle. JCI Insight, 2018, 3, .	5.0	60
10	A novel mechanism of tandem activation of ryanodine receptors by cytosolic and SR luminal Ca ²⁺ during excitation–contraction coupling in atrial myocytes. Journal of Physiology, 2017, 595, 3835-3845.	2.9	28
11	Experimental, Systems, and Computational Approaches to Understanding the MicroRNA-Mediated Reparative Potential of Cardiac Progenitor Cell–Derived Exosomes From Pediatric Patients. Circulation Research, 2017, 120, 701-712.	4.5	141
12	Electrically Induced Calcium Handling in Cardiac Progenitor Cells. Stem Cells International, 2016, 2016, 2016, 1-11.	2.5	7
13	Fibronectin and Cyclic Strain Improve Cardiac Progenitor Cell Regenerative Potential <i>In Vitro</i> . Stem Cells International, 2016, 2016, 1-11.	2.5	23
14	A human pluripotent stem cell model of catecholaminergic polymorphic ventricular tachycardia recapitulates patient-specific drug responses. DMM Disease Models and Mechanisms, 2016, 9, 927-39.	2.4	45
15	Knockdown of TNF-α by DNAzyme gold nanoparticles as an anti-inflammatory therapy for myocardial infarction. Biomaterials, 2016, 83, 12-22.	11.4	100
16	Cytosolic and nuclear calcium signaling in atrial myocytes: IP ₃ -mediated calcium release and the role of mitochondria. Channels, 2015, 9, 129-138.	2.8	25
17	Bioactive nanoparticles improve calcium handling in failing cardiac myocytes. Nanomedicine, 2015, 10, 3343-3357.	3.3	14
18	Inositolâ€1,4,5â€trisphosphate induced Ca ²⁺ release and excitation–contraction coupling in atrial myocytes from normal and failing hearts. Journal of Physiology, 2015, 593, 1459-1477.	2.9	66

Joshua T Maxwell

#	Article	IF	CITATIONS
19	Identification of Therapeutic Covariant MicroRNA Clusters in Hypoxia-Treated Cardiac Progenitor Cell Exosomes Using Systems Biology. Circulation Research, 2015, 116, 255-263.	4.5	328
20	Spatially Defined InsP3-Mediated Signaling in Embryonic Stem Cell-Derived Cardiomyocytes. PLoS ONE, 2014, 9, e83715.	2.5	15
21	Urocortin 2 stimulates nitric oxide production in ventricular myocytes via Akt- and PKA-mediated phosphorylation of eNOS at serine 1177. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 307, H689-H700.	3.2	24
22	β-adrenergic stimulation increases the intra-SR Ca termination threshold for spontaneous Ca waves in cardiac myocytes. Channels, 2013, 7, 206-210.	2.8	4
23	Facilitation of cytosolic calcium wave propagation by local calcium uptake into the sarcoplasmic reticulum in cardiac myocytes. Journal of Physiology, 2012, 590, 6037-6045.	2.9	31
24	βâ€Adrenergic stimulation increases the intraâ€sarcoplasmic reticulum Ca ²⁺ threshold for Ca ²⁺ wave generation. Journal of Physiology, 2012, 590, 6093-6108.	2.9	11
25	Dantrolene prevents arrhythmogenic Ca2+ release in heart failure. American Journal of Physiology - Heart and Circulatory Physiology, 2012, 302, H953-H963.	3.2	74