Louis A Altamura

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1143818/publications.pdf Version: 2024-02-01

Ι ΟΙ ΙΙς Δ ΔΙ ΤΑΜΠΡΑ

#	Article	IF	CITATIONS
1	Junin Virus Activates p38 MAPK and HSP27 Upon Entry. Frontiers in Cellular and Infection Microbiology, 2022, 12, 798978.	3.9	2
2	SARS-CoV-2 is rapidly inactivated at high temperature. Environmental Chemistry Letters, 2021, 19, 1773-1777.	16.2	48
3	Transcriptomic Analysis Reveals Host miRNAs Correlated with Immune Gene Dysregulation during Fatal Disease Progression in the Ebola Virus Cynomolgus Macaque Disease Model. Microorganisms, 2021, 9, 665.	3.6	4
4	Comparison of transcriptional responses between pathogenic and nonpathogenic hantavirus infections in Syrian hamsters using NanoString. PLoS Neglected Tropical Diseases, 2021, 15, e0009592.	3.0	4
5	Seroconversion and fever are dose-dependent in a nonhuman primate model of inhalational COVID-19. PLoS Pathogens, 2021, 17, e1009865.	4.7	33
6	Simulated Sunlight Rapidly Inactivates SARS-CoV-2 on Surfaces. Journal of Infectious Diseases, 2020, 222, 214-222.	4.0	275
7	Increasing Temperature and Relative Humidity Accelerates Inactivation of SARS-CoV-2 on Surfaces. MSphere, 2020, 5, .	2.9	265
8	Development of an antigen detection assay for early point-of-care diagnosis of Zaire ebolavirus. PLoS Neglected Tropical Diseases, 2020, 14, e0008817.	3.0	8
9	Development of an antigen detection assay for early point-of-care diagnosis of Zaire ebolavirus. , 2020, 14, e0008817.		0
10	Development of an antigen detection assay for early point-of-care diagnosis of Zaire ebolavirus. , 2020, 14, e0008817.		0
11	Development of an antigen detection assay for early point-of-care diagnosis of Zaire ebolavirus. , 2020, 14, e0008817.		0
12	Development of an antigen detection assay for early point-of-care diagnosis of Zaire ebolavirus. , 2020, 14, e0008817.		0
13	GP38-targeting monoclonal antibodies protect adult mice against lethal Crimean-Congo hemorrhagic fever virus infection. Science Advances, 2019, 5, eaaw9535.	10.3	56
14	Magnetic Nanotrap Particles Preserve the Stability of Venezuelan Equine Encephalitis Virus in Blood for Laboratory Detection. Frontiers in Veterinary Science, 2019, 6, 509.	2.2	12
15	Virus-encoded miRNAs in Ebola virus disease. Scientific Reports, 2018, 8, 6480.	3.3	34
16	A conserved transcriptional response to intranasal Ebola virus exposure in nonhuman primates prior to onset of fever. Science Translational Medicine, 2018, 10, .	12.4	25
17	Exploring Crimean-Congo Hemorrhagic Fever Virus-Induced Hepatic Injury Using Antibody-Mediated Type I Interferon Blockade in Mice. Journal of Virology, 2018, 92, .	3.4	41
18	Sequence Optimized Real-Time Reverse Transcription Polymerase Chain Reaction Assay for Detection of Crimean-Congo Hemorrhagic Fever Virus. American Journal of Tropical Medicine and Hygiene, 2018, 98, 211-215.	1.4	18

LOUIS A ALTAMURA

#	Article	IF	CITATIONS
19	Inactivation of West Nile virus in serum with heat, ionic detergent, and reducing agent for proteomic applications. Journal of Virological Methods, 2017, 248, 1-6.	2.1	3
20	Comparison of Transcriptomic Platforms for Analysis of Whole Blood from Ebola-Infected Cynomolgus Macaques. Scientific Reports, 2017, 7, 14756.	3.3	32
21	A Haploid Genetic Screen Identifies Heparan Sulfate Proteoglycans Supporting Rift Valley Fever Virus Infection. Journal of Virology, 2016, 90, 1414-1423.	3.4	103