List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11437398/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Letter to the Editor concerning "Best Practice Guidelines for Assessment and Management of Osteoporosis in Adult Patients Undergoing Elective Spinal Reconstruction― Spine, 2022, 47, E466-E467.	1.0	1
2	Vertebral Bone Mineral Density, Vertebral Strength, and Syndesmophyte Growth in Ankylosing Spondylitis: The Importance of Bridging. Arthritis and Rheumatology, 2022, 74, 1352-1362.	2.9	6
3	Biomechanical structure–function relations for human trabecular bone — comparison of calcaneus, femoral neck, greater trochanter, proximal tibia, and vertebra. Computer Methods in Biomechanics and Biomedical Engineering, 2022, , 1-9.	0.9	0
4	Tripleâ€Phase Computed Tomography May Replace Dualâ€Energy Xâ€ray Absorptiometry Scan for Evaluation of Osteoporosis in Liver Transplant Candidates. Liver Transplantation, 2021, 27, 341-348.	1.3	2
5	The Role of Vertebral Porosity and Implant Loading Mode on Bone-Tissue Stress in the Human Vertebral Body Following Lumbar Total Disc Arthroplasty. Spine, 2021, 46, E1022-E1030.	1.0	1
6	Romosozumab improves lumbar spine bone mass and bone strength parameters relative to alendronate in postmenopausal women: results from the Active-Controlled Fracture Study in Postmenopausal Women With Osteoporosis at High Risk (ARCH) trial. Journal of Bone and Mineral Research, 2021, 36, 2139-2152.	3.1	35
7	Effects of Longâ€Duration Spaceflight on Vertebral Strength and Risk of Spine Fracture. Journal of Bone and Mineral Research, 2020, 35, 269-276.	3.1	12
8	Comparison of Vertebral and Femoral Strength Between White and Asian Adults Using Finite Element Analysis of Computed Tomography Scans. Journal of Bone and Mineral Research, 2020, 35, 2345-2354.	3.1	8
9	Effect of variations in tissue-level ductility on human vertebral strength. Bone, 2020, 137, 115445.	1.4	Ο
10	Loadâ€ŧransfer in the human vertebral body following lumbar total disc arthroplasty: Effects of implant size and stiffness in axial compression and forward flexion. JOR Spine, 2020, 3, e1078.	1.5	8
11	Regional Variations of HR-pQCT Morphological and Biomechanical Measurements of Bone Segments and Their Associations With Whole Distal Radius and Tibia Mechanical Properties. Journal of Biomechanical Engineering, 2019, 141, .	0.6	5
12	Letter to the Editor. British Journal of Radiology, 2019, 92, 20190115.	1.0	5
13	Effects of ex vivo ionizing radiation on collagen structure and whole-bone mechanical properties of mouse vertebrae. Bone, 2019, 128, 115043.	1.4	22
14	Accurate and Efficient Plate and Rod Microfinite Element Models for Whole Bone Segments Based on High-Resolution Peripheral Computed Tomography. Journal of Biomechanical Engineering, 2019, 141, .	0.6	5
15	Cost-Effectiveness of Osteoporosis Screening Using Biomechanical Computed Tomography for Patients With a Previous Abdominal CT. Journal of Bone and Mineral Research, 2019, 34, 1229-1239.	3.1	18
16	Findings of CT-Derived Bone Strength Assessment in Inflammatory Bowel Disease Patients Undergoing CT Enterography in Clinical Practice. Inflammatory Bowel Diseases, 2019, 25, 1072-1079.	0.9	11
17	Osteoporosis and Hip Fracture Risk From Routine Computed Tomography Scans: The Fracture, Osteoporosis, and CT Utilization Study (FOCUS). Journal of Bone and Mineral Research, 2018, 33, 1291-1301.	3.1	77
18	High-precision method for cyclic loading of small-animal vertebrae to assess bone quality. Bone Reports, 2018, 9, 165-172.	0.2	8

#	Article	IF	CITATIONS
19	Virtual stress testing of fracture stability in soldiers with severely comminuted tibial fractures. Journal of Orthopaedic Research, 2017, 35, 805-811.	1.2	16
20	Effect of Testosterone Treatment on Volumetric Bone Density and Strength in Older Men With Low Testosterone. JAMA Internal Medicine, 2017, 177, 471.	2.6	241
21	Skeletal Fluorosis Due To Inhalation Abuse of a Difluoroethane-Containing Computer Cleaner. Journal of Bone and Mineral Research, 2017, 32, 188-195.	3.1	25
22	Vertebral and femoral bone mineral density and bone strength in prostate cancer patients assessed in phantomless PET/CT examinations. Bone, 2017, 101, 62-69.	1.4	28
23	Greater Gains in Spine and Hip Strength for Romosozumab Compared With Teriparatide in Postmenopausal Women With Low Bone Mass. Journal of Bone and Mineral Research, 2017, 32, 1956-1962.	3.1	70
24	Comparison of non-invasive assessments of strength of the proximal femur. Bone, 2017, 105, 93-102.	1.4	68
25	Phantomless calibration of CT scans for measurement of BMD and bone strength—Inter-operator reanalysis precision. Bone, 2017, 103, 325-333.	1.4	80
26	Relationships among ultrasonic and mechanical properties of cancellous bone in human calcaneus in vitro. Bone, 2017, 103, 93-101.	1.4	28
27	Prevalence of Poor Bone Quality in Women Undergoing Spinal Fusion Using Biomechanical-CT Analysis. Spine, 2016, 41, 246-252.	1.0	27
28	Finite Element Analysis of Denosumab Treatment Effects on Vertebral Strength in Ovariectomized Cynomolgus Monkeys. Journal of Bone and Mineral Research, 2016, 31, 1586-1595.	3.1	21
29	Effective modulus of the human intervertebral disc and its effect on vertebral bone stress. Journal of Biomechanics, 2016, 49, 1134-1140.	0.9	43
30	Material heterogeneity in cancellous bone promotes deformation recovery after mechanical failure. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 2892-2897.	3.3	46
31	High-resolution peripheral quantitative computed tomography (HR-pQCT) can assess microstructural and biomechanical properties of both human distal radius and tibia: Ex vivo computational and experimental validations. Bone, 2016, 86, 58-67.	1.4	47
32	Comprehensive Assessment of Osteoporosis and Bone Fragility with CT Colonography. Radiology, 2016, 278, 172-180.	3.6	53
33	Cortical and trabecular load sharing in the human femoral neck. Journal of Biomechanics, 2015, 48, 816-822.	0.9	58
34	Femoral Volumetric Bone Density, Geometry, and Strength in Relation to 25-Hydroxy Vitamin D in Older Men. Journal of Bone and Mineral Research, 2015, 30, 562-569.	3.1	25
35	The Association Between BMI and QCT-Derived Proximal Hip Structure and Strength in Older Men: A Cross-Sectional Study. Journal of Bone and Mineral Research, 2015, 30, 1301-1308.	3.1	25
36	Theoretical effects of fully ductile versus fully brittle behaviors of bone tissue on the strength of the human proximal femur and vertebral body. Journal of Biomechanics, 2015, 48, 1264-1269.	0.9	16

#	Article	IF	CITATIONS
37	The Quartic Piecewise-Linear Criterion for the Multiaxial Yield Behavior of Human Trabecular Bone. Journal of Biomechanical Engineering, 2015, 137, .	0.6	10
38	Trabecular plates and rods determine elastic modulus and yield strength of human trabecular bone. Bone, 2015, 72, 71-80.	1.4	92
39	Femoral and Vertebral Strength Improvements in Postmenopausal Women With Osteoporosis Treated With Denosumab. Journal of Bone and Mineral Research, 2014, 29, 158-165.	3.1	98
40	The effects of tensile-compressive loading mode and microarchitecture on microdamage in human vertebral cancellous bone. Journal of Biomechanics, 2014, 47, 3605-3612.	0.9	30
41	Assessment of incident spine and hip fractures in women and men using finite element analysis of CT scans. Journal of Bone and Mineral Research, 2014, 29, 570-580.	3.1	220
42	Literature review: The effects of teriparatide therapy at the hip in patients with osteoporosis. Bone, 2014, 67, 246-256.	1.4	81
43	Assessing the Effects of Teriparatide Treatment on Bone Mineral Density, Bone Microarchitecture, and Bone Strength. Journal of Bone and Joint Surgery - Series A, 2014, 96, e90.	1.4	32
44	Validation of a CT-Derived Method for Osteoporosis Screening in IBD Patients Undergoing Contrast-Enhanced CT Enterography. American Journal of Gastroenterology, 2014, 109, 401-408.	0.2	49
45	Microstructural Failure Mechanisms in the Human Proximal Femur for Sideways Fall Loading. Journal of Bone and Mineral Research, 2014, 29, 507-515.	3.1	79
46	Evaluation of teriparatide treatment in adults with osteogenesis imperfecta. Journal of Clinical Investigation, 2014, 124, 491-498.	3.9	140
47	Theoretical bounds for the influence of tissue-level ductility on the apparent-level strength of human trabecular bone. Journal of Biomechanics, 2013, 46, 1293-1299.	0.9	32
48	Bone Density, Turnover, and Estimated Strength in Postmenopausal Women Treated With Odanacatib: A Randomized Trial. Journal of Clinical Endocrinology and Metabolism, 2013, 98, 571-580.	1.8	119
49	Biaxial Normal Strength Behavior in the Axial-Transverse Plane for Human Trabecular Bone—Effects of Bone Volume Fraction, Microarchitecture, and Anisotropy. Journal of Biomechanical Engineering, 2013, 135, 121010.	0.6	9
50	Hip and spine strength effects of adding versus switching to teriparatide in postmenopausal women with osteoporosis treated with prior alendronate or raloxifene. Journal of Bone and Mineral Research, 2013, 28, 1328-1336.	3.1	76
51	Micromechanics of the human vertebral body for forward flexion. Journal of Biomechanics, 2012, 45, 2142-2148.	0.9	32
52	Shear strength behavior of human trabecular bone. Journal of Biomechanics, 2012, 45, 2513-2519.	0.9	63
53	Femoral strength in osteoporotic women treated with teriparatide or alendronate. Bone, 2012, 50, 165-170.	1.4	93
54	Vertebral fragility and structural redundancy. Journal of Bone and Mineral Research, 2012, 27, 2152-2158.	3.1	36

#	Article	IF	CITATIONS
55	Prediction of new clinical vertebral fractures in elderly men using finite element analysis of CT scans. Journal of Bone and Mineral Research, 2012, 27, 808-816.	3.1	169
56	Trabecular Architecture and Vertebral Fragility in Osteoporosis. Current Osteoporosis Reports, 2012, 10, 132-140.	1.5	22
57	Non-Invasive Strength Analysis of the Spine Using Clinical CTÂScans. , 2011, , 45-50.		0
58	Influence of vertical trabeculae on the compressive strength of the human vertebra. Journal of Bone and Mineral Research, 2011, 26, 263-269.	3.1	66
59	Mechanical contributions of the cortical and trabecular compartments contribute to differences in age-related changes in vertebral body strength in men and women assessed by QCT-based finite element analysis. Journal of Bone and Mineral Research, 2011, 26, 974-983.	3.1	108
60	Association of hip strength estimates by finite-element analysis with fractures in women and men. Journal of Bone and Mineral Research, 2011, 26, 1593-1600.	3.1	93
61	Age-dependence of femoral strength in white women and men. Journal of Bone and Mineral Research, 2010, 25, 994-1001.	3.1	111
62	Relation of vertebral deformities to bone density, structure, and strength. Journal of Bone and Mineral Research, 2010, 25, 1922-1930.	3.1	90
63	Response to questions regarding conclusions reached in "Age dependence of femoral strength in white women and menâ€. Journal of Bone and Mineral Research, 2010, 25, 2542-2542.	3.1	86
64	Mechanisms of initial endplate failure in the human vertebral body. Journal of Biomechanics, 2010, 43, 3126-3131.	0.9	87
65	Biomechanical computed tomography—noninvasive bone strength analysis using clinical computed tomography scans. Annals of the New York Academy of Sciences, 2010, 1192, 57-65.	1.8	110
66	µCT/HR-pQCT Image Based Plate-Rod Microstructural Finite Element Model Efficiently Predicts the Elastic Moduli and Yield Strength of Human Trabecular Bone. , 2010, , .		0
67	Computational Modeling of Trabecular Bone Mechanics. , 2010, , 277-306.		1
68	Once-Monthly Oral Ibandronate Improves Biomechanical Determinants of Bone Strength in Women with Postmenopausal Osteoporosis. Journal of Clinical Endocrinology and Metabolism, 2009, 94, 171-180.	1.8	86
69	Heterogeneity of yield strain in low-density versus high-density human trabecular bone. Journal of Biomechanics, 2009, 42, 2165-2170.	0.9	48
70	Micromechanical analyses of vertebral trabecular bone based on individual trabeculae segmentation of plates and rods. Journal of Biomechanics, 2009, 42, 249-256.	0.9	78
71	Effects of suppression of bone turnover on cortical and trabecular load sharing in the canine vertebral body. Journal of Biomechanics, 2009, 42, 517-523.	0.9	4
72	Finite Element Analysis of the Proximal Femur and Hip Fracture Risk in Older Men. Journal of Bone and Mineral Research, 2009, 24, 475-483.	3.1	229

#	Article	IF	CITATIONS
73	Role of Trabecular Microarchitecture in Whole-Vertebral Body Biomechanical Behavior. Journal of Bone and Mineral Research, 2009, 24, 1523-1530.	3.1	102
74	The influence of boundary conditions and loading mode on high-resolution finite element-computed trabecular tissue properties. Bone, 2009, 44, 573-578.	1.4	45
75	Trabecular bone strength predictions using finite element analysis of micro-scale images at limited spatial resolution. Bone, 2009, 44, 579-584.	1.4	112
76	Complete Volumetric Decomposition of Individual Trabecular Plates and Rods and Its Morphological Correlations With Anisotropic Elastic Moduli in Human Trabecular Bone. Journal of Bone and Mineral Research, 2008, 23, 223-235.	3.1	195
77	Vertebral strength changes in rheumatoid arthritis patients treated with alendronate, as assessed by finite element analysis of clinical computed tomography scans: A prospective randomized clinical trial. Arthritis and Rheumatism, 2008, 58, 3340-3349.	6.7	49
78	Theoretical Implications of the Biomechanical Fracture Threshold. Journal of Bone and Mineral Research, 2008, 23, 1541-1547.	3.1	60
79	Femoral Bone Strength and Its Relation to Cortical and Trabecular Changes After Treatment With PTH, Alendronate, and Their Combination as Assessed by Finite Element Analysis of Quantitative CT Scans. Journal of Bone and Mineral Research, 2008, 23, 1974-1982.	3.1	191
80	MULTI-SCALE MODELING OF THE HUMAN VERTEBRAL BODY: COMPARISON OF MICRO-CT BASED HIGH-RESOLUTION AND CONTINUUM-LEVEL MODELS. , 2008, , .		2
81	Locations of bone tissue at high risk of initial failure during compressive loading of the human vertebral body. Bone, 2007, 41, 733-739.	1.4	69
82	The micro-mechanics of cortical shell removal in the human vertebral body. Computer Methods in Applied Mechanics and Engineering, 2007, 196, 3025-3032.	3.4	41
83	Side-artifact errors in yield strength and elastic modulus for human trabecular bone and their dependence on bone volume fraction and anatomic site. Journal of Biomechanics, 2007, 40, 3381-3388.	0.9	39
84	Structural Determinants of Vertebral Fracture Risk. Journal of Bone and Mineral Research, 2007, 22, 1885-1892.	3.1	174
85	Constitutive Modeling and Algorithmic Implementation of a Plasticity-like Model for Trabecular Bone Structures. Computational Mechanics, 2007, 40, 61-72.	2.2	24
86	Influence of bone volume fraction and architecture on computed large-deformation failure mechanisms in human trabecular bone. Bone, 2006, 39, 1218-1225.	1.4	135
87	Biomechanics of Vertebral Bone. , 2006, , 63-98.		8
88	The effects of side-artifacts on the elastic modulus of trabecular bone. Journal of Biomechanics, 2006, 39, 1955-1963.	0.9	60
89	A Biomechanical Analysis of the Effects of Resorption Cavities on Cancellous Bone Strength. Journal of Bone and Mineral Research, 2006, 21, 1248-1255.	3.1	97
90	Effects of Teriparatide and Alendronate on Vertebral Strength as Assessed by Finite Element Modeling of QCT Scans in Women With Osteoporosis. Journal of Bone and Mineral Research, 2006, 22, 149-157.	3.1	217

#	Article	IF	CITATIONS
91	Development of residual strains in human vertebral trabecular bone after prolonged static and cyclic loading at low load levels. Journal of Biomechanics, 2006, 39, 1812-1818.	0.9	65
92	Effects ofin vitro bone formation on the mechanical properties of a trabeculated hydroxyapatite bone substitute. Journal of Biomedical Materials Research - Part A, 2006, 77A, 688-699.	2.1	22
93	Sensitivity of Vertebral Compressive Strength to Endplate Loading Distribution. Journal of Biomechanical Engineering, 2006, 128, 641-646.	0.6	17
94	Cortical and Trabecular Load Sharing in the Human Vertebral Body. Journal of Bone and Mineral Research, 2005, 21, 307-314.	3.1	244
95	Damage in trabecular bone at small strains. European Journal of Morphology, 2005, 42, 13-21.	1.4	54
96	Trabecular microfracture and the influence of pyridinium and non-enzymatic glycation-mediated collagen cross-links. Bone, 2005, 37, 825-832.	1.4	206
97	The Modified Super-Ellipsoid Yield Criterion for Human Trabecular Bone. Journal of Biomechanical Engineering, 2004, 126, 677-684.	0.6	91
98	Similarity in the fatigue behavior of trabecular bone across site and species. Journal of Biomechanics, 2004, 37, 181-187.	0.9	96
99	Comparison of the elastic and yield properties of human femoral trabecular and cortical bone tissue. Journal of Biomechanics, 2004, 37, 27-35.	0.9	883
100	Contribution of inter-site variations in architecture to trabecular bone apparent yield strains. Journal of Biomechanics, 2004, 37, 1413-1420.	0.9	75
101	Mechanisms of uniformity of yield strains for trabecular bone. Journal of Biomechanics, 2004, 37, 1671-1678.	0.9	92
102	On Stölken and Kinney (Bone 2003;33(4):494–504). Bone, 2004, 34, 912.	1.4	3
103	Relationship Between Axial and Bending Behaviors of the Human Thoracolumbar Vertebra. Spine, 2004, 29, 2248-2255.	1.0	48
104	Trabecular bone modulus–density relationships depend on anatomic site. Journal of Biomechanics, 2003, 36, 897-904.	0.9	937
105	Finite element models predict in vitro vertebral body compressive strength better than quantitative computed tomography. Bone, 2003, 33, 744-750.	1.4	486
106	Quantitative Computed Tomography-Based Finite Element Models of the Human Lumbar Vertebral Body: Effect of Element Size on Stiffness, Damage, and Fracture Strength Predictions. Journal of Biomechanical Engineering, 2003, 125, 434-438.	0.6	95
107	Applications of Algebraic Multigrid to Large-Scale Finite Element Analysis of Whole Bone Micro-Mechanics on the IBM SP. , 2003, , .		11
108	Finite Element Modeling of the Human Thoracolumbar Spine. Spine, 2003, 28, 559-565.	1.0	102

#	Article	IF	CITATIONS
109	Biaxial Failure Behavior of Bovine Tibial Trabecular Bone. Journal of Biomechanical Engineering, 2002, 124, 699-705.	0.6	50
110	Load Transfer Mechanisms in Cylindrical Interbody Cage Constructs. Spine, 2002, 27, 2101-2107.	1.0	32
111	Quantitative computed tomography estimates of the mechanical properties of human vertebral trabecular bone. Journal of Orthopaedic Research, 2002, 20, 801-805.	1.2	213
112	Biomechanical effects of intraspecimen variations in tissue modulus for trabecular bone. Journal of Biomechanics, 2002, 35, 237-246.	0.9	107
113	Biomechanics of Trabecular Bone. Annual Review of Biomedical Engineering, 2001, 3, 307-333.	5.7	613
114	Effects of Bone Cement Volume and Distribution on Vertebral Stiffness After Vertebroplasty. Spine, 2001, 26, 1547-1554.	1.0	397
115	Relative roles of microdamage and microfracture in the mechanical behavior of trabecular bone. Journal of Orthopaedic Research, 2001, 19, 1001-1007.	1.2	80
116	Trabecular Eccentricity and Bone Adaptation. Journal of Theoretical Biology, 2001, 212, 211-221.	0.8	23
117	Sensitivity of damage predictions to tissue level yield properties and apparent loading conditions. Journal of Biomechanics, 2001, 34, 699-706.	0.9	34
118	Dependence of yield strain of human trabecular bone on anatomic site. Journal of Biomechanics, 2001, 34, 569-577.	0.9	563
119	Nonlinear Behavior of Trabecular Bone at Small Strains. Journal of Biomechanical Engineering, 2001, 123, 1-9.	0.6	83
120	Biomechanical consequences of an isolated overload on the human vertebral body. Journal of Orthopaedic Research, 2000, 18, 685-690.	1.2	110
121	High-resolution finite element models with tissue strength asymmetry accurately predict failure of trabecular bone. Journal of Biomechanics, 2000, 33, 1575-1583.	0.9	379
122	Quantitative Assessment of Steady and Pulsatile Flow Fields in a Parallel Plate Flow Chamber. Annals of Biomedical Engineering, 1999, 27, 194-199.	1.3	43
123	Mechanical behavior of human trabecular bone after overloading. Journal of Orthopaedic Research, 1999, 17, 346-353.	1.2	126
124	Uniaxial yield strains for bovine trabecular bone are isotropic and asymmetric. Journal of Orthopaedic Research, 1999, 17, 582-585.	1.2	70
125	Characterization of the mechanical and ultrastructural properties of heat-treated cortical bone for use as a bone substitute. , 1999, 45, 327-336.		40
197	Structure function relationships for corolling hydrowycnatite bong substitute 1000 47 71 79		0.0

126 Structure-function relationships for coralline hydroxyapatite bone substitute., 1999, 47, 71-78.

33

#	Article	IF	CITATIONS
127	Characterization of the mechanical and ultrastructural properties of heat-treated cortical bone for use as a bone substitute. Journal of Biomedical Materials Research Part B, 1999, 45, 327.	3.0	1
128	Yield strain behavior of trabecular bone. Journal of Biomechanics, 1998, 31, 601-608.	0.9	543
129	Computed tomography-based finite element analysis predicts failure loads and fracture patterns for vertebral sections. Journal of Orthopaedic Research, 1998, 16, 300-308.	1.2	122
130	Load Sharing Between the Shell and Centrum in the Lumbar Vertebral Body. Spine, 1997, 22, 140-150.	1.0	174
131	Systematic and random errors in compression testing of trabecular bone. Journal of Orthopaedic Research, 1997, 15, 101-110.	1.2	306
132	Dependence of trabecular damage on mechanical strain. Journal of Orthopaedic Research, 1997, 15, 781-787.	1.2	82
133	The dependence of shear failure properties of trabecular bone on apparent density and trabecular orientation. Journal of Biomechanics, 1996, 29, 1309-1317.	0.9	129
134	The effect of impact direction on the structural capacity of the proximal femur during falls. Journal of Bone and Mineral Research, 1996, 11, 377-383.	3.1	135
135	Fundamental load transfer patterns for press-fit, surface-treated intramedullary fixation stems. Journal of Biomechanics, 1994, 27, 1147-1157.	0.9	27
136	Compressive creep behavior of bovine trabecular bone. Journal of Biomechanics, 1994, 27, 301-310.	0.9	76
137	Mechanical behavior of damaged trabecular bone. Journal of Biomechanics, 1994, 27, 1309-1318.	0.9	103
138	Trabecular bone exhibits fully linear elastic behavior and yields at low strains. Journal of Biomechanics, 1994, 27, 1127-1136.	0.9	270
139	Finite element modeling of damage accumulation in trabecular bone under cyclic loading. Journal of Biomechanics, 1994, 27, 145-155.	0.9	89
140	Differences between the tensile and compressive strengths of bovine tibial trabecular bone depend on modulus. Journal of Biomechanics, 1994, 27, 1137-1146.	0.9	290
141	Theoretical analysis of the experimental artifact in trabecular bone compressive modulus. Journal of Biomechanics, 1993, 26, 599-607.	0.9	122
142	Trabecular bone modulus and strength can depend on specimen geometry. Journal of Biomechanics, 1993, 26, 991-1000.	0.9	133
143	Effects of porous coating and collar support on early load transfer for a cementless hip prosthesis. Journal of Biomechanics, 1993, 26, 1205-1216.	0.9	42
144	A 20-Year Perspective on the Mechanical Properties of Trabecular Bone. Journal of Biomechanical Engineering, 1993, 115, 534-542.	0.6	239