Wenzhong Shen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1143710/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nitrogen-containing porous carbons: synthesis and application. Journal of Materials Chemistry A, 2013, 1, 999-1013.	10.3	602
2	Fe ₃ O ₄ @Carbon Nanosheets for All-Solid-State Supercapacitor Electrodes. ACS Applied Materials & Interfaces, 2016, 8, 19475-19483.	8.0	247
3	Hierarchical porous polyacrylonitrile-based activated carbon fibers for CO2 capture. Journal of Materials Chemistry, 2011, 21, 14036.	6.7	140
4	Ultrafast Response/Recovery and High Selectivity of the H ₂ S Gas Sensor Based on α-Fe ₂ O ₃ Nano-Ellipsoids from One-Step Hydrothermal Synthesis. ACS Applied Materials & Interfaces, 2019, 11, 12761-12769.	8.0	118
5	Asphaltene-Based Porous Carbon Nanosheet as Electrode for Supercapacitor. ACS Sustainable Chemistry and Engineering, 2018, 6, 15708-15719.	6.7	113
6	Gelatin-Based Microporous Carbon Nanosheets as High Performance Supercapacitor Electrodes. ACS Sustainable Chemistry and Engineering, 2016, 4, 1328-1337.	6.7	109
7	Asphaltenes: Separations, structural analysis and applications. Journal of Energy Chemistry, 2019, 34, 186-207.	12.9	108
8	Facile one-pot synthesis of bimodal mesoporous carbon nitride and its function as a lipase immobilization support. Journal of Materials Chemistry, 2011, 21, 3890.	6.7	98
9	Enhanced electrochemical performance of CuCo2S4/carbon nanotubes composite as electrode material for supercapacitors. Journal of Colloid and Interface Science, 2019, 549, 105-113.	9.4	94
10	Carbon Nanosheets: Synthesis and Application. ChemSusChem, 2015, 8, 2004-2027.	6.8	93
11	Nitrogen- and oxygen-enriched 3D hierarchical porous carbon fibers: synthesis and superior supercapacity. Journal of Materials Chemistry A, 2015, 3, 14817-14825.	10.3	75
12	Constructing Co@N-doped graphene shell catalyst via Mott-Schottky effect for selective hydrogenation of 5-hydroxylmethylfurfural. Applied Catalysis B: Environmental, 2020, 263, 118339.	20.2	70
13	Yeastâ€Based Microporous Carbon Materials for Carbon Dioxide Capture. ChemSusChem, 2012, 5, 1274-1279.	6.8	68
14	Oxygen- and Nitrogen-Enriched Honeycomb-Like Porous Carbon from <i>Laminaria japonica</i> with Excellent Supercapacitor Performance in Aqueous Solution. ACS Sustainable Chemistry and Engineering, 2019, 7, 11550-11563.	6.7	56
15	Fe ₂ P@mesoporous carbon nanosheets synthesized <i>via</i> an organic template method as a cathode electrocatalyst for Zn–air batteries. Journal of Materials Chemistry A, 2019, 7, 11321-11330.	10.3	54
16	Room-temperature synthesized porous Cu(OH) ₂ /Cu ₇ S ₄ hybrid nanowires as a high-performance electrode material for asymmetric supercapacitors. Journal of Materials Chemistry A, 2020, 8, 724-734.	10.3	45
17	Coal tar- and residual oil-derived porous carbon as metal-free catalyst for nitroarene reduction to aminoarene. Carbon, 2019, 141, 542-552.	10.3	42
18	Ultra-sensitive room-temperature H2S sensor using Ag–In2O3 nanorod composites. Journal of Materials Science, 2018, 53, 16331-16344.	3.7	41

WENZHONG SHEN

#	Article	IF	CITATIONS
19	MnCo2O4/Ni3S4 nanocomposite for hybrid supercapacitor with superior energy density and long-term cycling stability. Journal of Colloid and Interface Science, 2022, 611, 503-512.	9.4	34
20	Preparation of mesoporous carbon from commercial activated carbon with steam activation in the presence of cerium oxide. Journal of Colloid and Interface Science, 2003, 264, 467-473.	9.4	32
21	Nitrogen-doped asphaltene-based porous carbon nanosheet for carbon dioxide capture. Applied Surface Science, 2019, 491, 607-615.	6.1	32
22	Cellulose generated-microporous carbon nanosheets with nitrogen doping. RSC Advances, 2014, 4, 9126-9132.	3.6	31
23	Hollow Porous Carbon Fiber from Cotton with Nitrogen Doping. ChemPlusChem, 2014, 79, 284-289.	2.8	30
24	From Coal-Heavy Oil Co-refining Residue to Asphaltene-Based Functional Carbon Materials. ACS Sustainable Chemistry and Engineering, 2019, 7, 4523-4531.	6.7	30
25	Adsorption of hexavalent chromium by polyacrylonitrile-based porous carbon from aqueous solution. Royal Society Open Science, 2018, 5, 171662.	2.4	29
26	Hollow Structure and Electron Promotion Effect of Mesoporous Pd/CeO ₂ Catalyst for Enhanced Catalytic Hydrogenation. ChemCatChem, 2018, 10, 1019-1026.	3.7	29
27	Facile and Sustainable Synthesis of Co ₃ O ₄ @Hollow-Carbon-Fiber for a Binder-Free Supercapacitor Electrode. ChemistrySelect, 2016, 1, 6469-6475.	1.5	26
28	Spherical carbon with SO ₃ H groups as an efficient solid acid catalyst for 2,4,5-triphenyl-imidazole synthesis. ChemistrySelect, 2016, 1, 301-308.	1.5	24
29	Hierarchical Porous Carbons Derived from Renewable Poplar Anthers for Highâ€Performance Supercapacitors. ChemElectroChem, 2018, 5, 1451-1458.	3.4	24
30	Two-Dimensional Pd Nanosheets with Enhanced Catalytic Activity for Selective Hydrogenation of Nitrobenzene to Aniline. Energy & Fuels, 2021, 35, 4358-4366.	5.1	24
31	Hierarchically nanostructured Zn0.76C0.24S@Co(OH)2 for high-performance hybrid supercapacitor. Journal of Colloid and Interface Science, 2022, 618, 88-97.	9.4	18
32	Controlling spinning pitch property by tetrahydrofuran-soluble fraction of coal tar pitch co-carbonization with petrolatum. Carbon Letters, 2019, 29, 505-519.	5.9	16
33	Chemical Modification of Asphaltene with SEBS as Precursor for Isotropic Pitchâ€Based Carbon Fiber. ChemistrySelect, 2019, 4, 3690-3696.	1.5	16
34	Electrocatalytic Performance of Fe–N Encapsulated in Hollowly Mesoporous Carbon Microspheres for Oxygen Reduction Reaction and Zn–Air Battery. ACS Sustainable Chemistry and Engineering, 2022, 10, 7031-7040.	6.7	13
35	Evaluating multiâ€step oxidative stabilization behavior of coal tar pitchâ€based fiber. Journal of Applied Polymer Science, 2021, 138, 50002	2.6	11
36	Facile synthesis of chiral (right-handed) calcium carbonate with exceptional enantioseparation performance of dibenzoyltartaric acid. Journal of Colloid and Interface Science, 2019, 543, 130-137.	9.4	8

Wenzhong Shen

#	Article	IF	CITATIONS
37	Synthesis of spherical mesoporous carbon for electric double-layer capacitors. Journal of Sol-Gel Science and Technology, 2011, 60, 131-136.	2.4	7
38	Nitrogen-Doped Carbon Materials Prepared from Polyurethane Foams. ChemistrySelect, 2016, 1, 3204-3207.	1.5	7
39	Identification of nitrogen-polyaromatic compounds in asphaltene from co-processing of coal and petroleum residue using chromatography with mass spectrometry. International Journal of Coal Science and Technology, 2017, 4, 281-299.	6.0	7
40	Facile Adjusting of a Right-Handed Helical Structure of Cellulose-Based Carbon Material for Chiral Separation. ACS Sustainable Chemistry and Engineering, 2020, 8, 3401-3411.	6.7	6
41	Molecular growth from coal-based asphaltenes to spinnable pitch. Materials Chemistry and Physics, 2022, 276, 125427.	4.0	4
42	Title is missing!. Journal of Materials Science Letters, 2003, 22, 635-637.	0.5	2
43	Synthesis, Thermal Behavior and Energy Performance of Nitroguanidylâ€Functionalized Energetic Materials. Propellants, Explosives, Pyrotechnics, 2021, 46, 1276-1285.	1.6	1