John W Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1143660/publications.pdf

Version: 2024-02-01

72 papers 6,593 citations

34 h-index 71 g-index

74 all docs

74 docs citations

times ranked

74

11529 citing authors

#	Article	IF	CITATIONS
1	Vascular and Neurogenic Rejuvenation of the Aging Mouse Brain by Young Systemic Factors. Science, 2014, 344, 630-634.	12.6	857
2	Dynamic Biodistribution of Extracellular Vesicles <i>in Vivo</i> Using a Multimodal Imaging Reporter. ACS Nano, 2014, 8, 483-494.	14.6	663
3	Origins of tumor-associated macrophages and neutrophils. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 2491-2496.	7.1	547
4	Combined adult neurogenesis and BDNF mimic exercise effects on cognition in an Alzheimer's mouse model. Science, 2018, 361, .	12.6	536
5	Tracking the inflammatory response in stroke in vivo by sensing the enzyme myeloperoxidase. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 18584-18589.	7.1	275
6	Measuring Myeloperoxidase Activity in Biological Samples. PLoS ONE, 2013, 8, e67976.	2.5	265
7	Monocyte-Directed RNAi Targeting CCR2 Improves Infarct Healing in Atherosclerosis-Prone Mice. Circulation, 2013, 127, 2038-2046.	1.6	243
8	Oncogenic EGFR signaling cooperates with loss of tumor suppressor gene functions in gliomagenesis. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 2712-2716.	7.1	197
9	Activatable Magnetic Resonance Imaging Agent Reports Myeloperoxidase Activity in Healing Infarcts and Noninvasively Detects the Antiinflammatory Effects of Atorvastatin on Ischemia-Reperfusion Injury. Circulation, 2008, 117, 1153-1160.	1.6	178
10	Angiotensin II Drives the Production of Tumor-Promoting Macrophages. Immunity, 2013, 38, 296-308.	14.3	157
11	Enzyme-Sensitive Magnetic Resonance Imaging Targeting Myeloperoxidase Identifies Active Inflammation in Experimental Rabbit Atherosclerotic Plaques. Circulation, 2009, 120, 592-599.	1.6	151
12	Imaging of Myeloperoxidase in Mice by Using Novel Amplifiable Paramagnetic Substrates. Radiology, 2006, 240, 473-481.	7.3	147
13	Pleural innate response activator B cells protect against pneumonia via a GM-CSF-lgM axis. Journal of Experimental Medicine, 2014, 211, 1243-1256.	8.5	132
14	Human myeloperoxidase: A potential target for molecular MR imaging in atherosclerosis. Magnetic Resonance in Medicine, 2004, 52, 1021-1028.	3.0	127
15	Polyglucose nanoparticles with renal elimination and macrophage avidity facilitate PET imaging in ischaemic heart disease. Nature Communications, 2017, 8, 14064.	12.8	118
16	Myeloperoxidase-targeted imaging of active inflammatory lesions in murine experimental autoimmune encephalomyelitis. Brain, 2008, 131, 1123-1133.	7.6	106
17	Metabolic biotinylation of cell surface receptors for in vivo imaging. Nature Methods, 2006, 3, 391-396.	19.0	105
18	DTPA-bisamide-Based MR Sensor Agents for Peroxidase Imaging. Organic Letters, 2005, 7, 1719-1722.	4.6	101

#	Article	IF	CITATIONS
19	Activatable Magnetic Resonance Imaging Agents for Myeloperoxidase Sensing: Mechanism of Activation, Stability, and Toxicity. Journal of the American Chemical Society, 2010, 132, 168-177.	13.7	99
20	Myeloperoxidase–Hepatocyte–Stellate Cell Cross Talk Promotes Hepatocyte Injury and Fibrosis in Experimental Nonalcoholic Steatohepatitis. Antioxidants and Redox Signaling, 2015, 23, 1255-1269.	5. 4	93
21	Myeloperoxidase-rich Ly-6C+ myeloid cells infiltrate allografts and contribute to an imaging signature of organ rejection in mice. Journal of Clinical Investigation, 2010, 120, 2627-2634.	8.2	90
22	In vivo nanoparticle imaging of innate immune cells can serve as a marker of disease severity in a model of multiple sclerosis. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 13227-13232.	7.1	87
23	Demyelinating Diseases: Myeloperoxidase as an Imaging Biomarker and Therapeutic Target. Radiology, 2012, 263, 451-460.	7.3	81
24	Myeloperoxidase Inhibition Improves Ventricular Function and Remodeling AfterÂExperimental Myocardial Infarction. JACC Basic To Translational Science, 2016, 1, 633-643.	4.1	77
25	Combined magnetic resonance and fluorescence imaging of the living mouse brain reveals glioma response to chemotherapy. Neurolmage, 2009, 45, 360-369.	4.2	71
26	Myeloperoxidase Propagates Damage and is a Potential Therapeutic Target for Subacute Stroke. Journal of Cerebral Blood Flow and Metabolism, 2015, 35, 485-493.	4.3	66
27	Diagnosis of fatty liver with MR imaging. Journal of Magnetic Resonance Imaging, 1992, 2, 463-471.	3.4	60
28	Bevacizumab With Angiostatin-armed oHSV Increases Antiangiogenesis and Decreases Bevacizumab-induced Invasion in U87 Glioma. Molecular Therapy, 2012, 20, 37-45.	8.2	60
29	A paramagnetic contrast agent with myeloperoxidase-sensing properties. Organic and Biomolecular Chemistry, 2006, 4, 1887.	2.8	58
30	<scp>FOXO</scp> protects against ageâ€progressive axonal degeneration. Aging Cell, 2018, 17, e12701.	6.7	52
31	Myeloperoxidase Inhibition Increases Neurogenesis after Ischemic Stroke. Journal of Pharmacology and Experimental Therapeutics, 2016, 359, 262-272.	2.5	49
32	Single Reporter for Targeted Multimodal in Vivo Imaging. Journal of the American Chemical Society, 2012, 134, 5149-5156.	13.7	45
33	Mouse model of anti-NMDA receptor post–herpes simplex encephalitis. Neurology: Neuroimmunology and NeuroInflammation, 2019, 6, e529.	6.0	44
34	Multiple Sclerosis: Myeloperoxidase Immunoradiology Improves Detection of Acute and Chronic Disease in Experimental Model. Radiology, 2015, 275, 480-489.	7.3	37
35	Reducing myeloperoxidase activity decreases inflammation and increases cellular protection in ischemic stroke. Journal of Cerebral Blood Flow and Metabolism, 2019, 39, 1864-1877.	4.3	36
36	Phf8 loss confers resistance to depression-like and anxiety-like behaviors in mice. Nature Communications, 2017, 8, 15142.	12.8	35

#	Article	lF	Citations
37	Distinguishing Inflammation from Tumor and Peritumoral Edema by Myeloperoxidase Magnetic Resonance Imaging. Clinical Cancer Research, 2011, 17, 4484-4493.	7.0	34
38	An activatable PET imaging radioprobe is a dynamic reporter of myeloperoxidase activity in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 11966-11971.	7.1	34
39	Selective Factor XIIa Inhibition Attenuates Silent Brain Ischemia. JACC: Cardiovascular Imaging, 2012, 5, 1127-1138.	5.3	31
40	Molecular MR Imaging of Myeloperoxidase Distinguishes Steatosis from Steatohepatitis in Nonalcoholic Fatty Liver Disease. Radiology, 2017, 284, 390-400.	7.3	29
41	Predicting the Severity and Prognosis of Trismus after Intensity-Modulated Radiation Therapy for Oral Cancer Patients by Magnetic Resonance Imaging. PLoS ONE, 2014, 9, e92561.	2.5	24
42	Gelsolin decreases actin toxicity and inflammation in murine multiple sclerosis. Journal of Neuroimmunology, 2015, 287, 36-42.	2.3	24
43	Myeloperoxidase Nuclear Imaging for Epileptogenesis. Radiology, 2016, 278, 822-830.	7.3	24
44	Vasculitis: Molecular Imaging by Targeting the Inflammatory Enzyme Myeloperoxidase. Radiology, 2012, 262, 181-190.	7.3	23
45	Vulnerable Plaque Imaging. Neuroimaging Clinics of North America, 2005, 15, 609-621.	1.0	20
46	Optimal Brain MRI Protocol for New Neurological Complaint. PLoS ONE, 2014, 9, e110803.	2.5	20
47	Enhanced in Vivo Imaging of Metabolically Biotinylated Cell Surface Reporters. Analytical Chemistry, 2011, 83, 994-999.	6.5	19
48	Multimodal targeted high relaxivity thermosensitive liposome for in vivo imaging. Scientific Reports, 2015, 5, 17220.	3.3	18
49	A cerebellopontine angle mouse model for the investigation of tumor biology, hearing, and neurological function in NF2-related vestibular schwannoma. Nature Protocols, 2019, 14, 541-555.	12.0	18
50	Obtusaquinone: A Cysteine-Modifying Compound That Targets Keap1 for Degradation. ACS Chemical Biology, 2020, 15, 1445-1454.	3.4	18
51	Ligation of the Jugular Veins Does Not Result in Brain Inflammation or Demyelination in Mice. PLoS ONE, 2012, 7, e33671.	2.5	18
52	Myeloperoxidase Activity Imaging Using 67Ga Labeled Substrate. Molecular Imaging and Biology, 2005, 7, 403-410.	2.6	17
53	<scp>d</scp> -mannose suppresses oxidative response and blocks phagocytosis in experimental neuroinflammation. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	17
54	Stochastic Model of Tsc1 Lesions in Mouse Brain. PLoS ONE, 2013, 8, e64224.	2.5	16

#	Article	IF	Citations
55	Identification of small compound biomarkers of pituitary adenoma: a bilateral inferior petrosal sinus sampling study. Journal of NeuroInterventional Surgery, 2014, 6, 541-546.	3.3	15
56	Spinal Cord Inflammation: Molecular Imaging after Thoracic Aortic Ischemia Reperfusion Injury. Radiology, 2017, 282, 202-211.	7.3	15
57	Highly Efficient Activatable MRI Probe to Sense Myeloperoxidase Activity. Journal of Medicinal Chemistry, 2021, 64, 5874-5885.	6.4	15
58	A versatile imaging platform with fluorescence and CT imaging capabilities that detects myeloperoxidase activity and inflammation at different scales. Theranostics, 2019, 9, 7525-7536.	10.0	12
59	MRI of Iron Oxide Nanoparticles and Myeloperoxidase Activity Links Inflammation to Brain Edema in Experimental Cerebral Malaria. Radiology, 2019, 290, 359-367.	7.3	11
60	Surface biotinylation of cytotoxic T lymphocytes for in vivo tracking of tumor immunotherapy in murine models. Cancer Immunology, Immunotherapy, 2016, 65, 1545-1554.	4.2	10
61	Dynamic 1H-MRS assessment of brain tumors: A novel approach for differential diagnosis of glioma. Oncotarget, 2015, 6, 32257-32265.	1.8	10
62	Microstructural Changes in Absence Seizure Children: A Diffusion Tensor Magnetic Resonance Imaging Study. Pediatrics and Neonatology, 2016, 57, 318-325.	0.9	9
63	Ultrasmall Superparamagnetic Iron Oxide Imaging Identifies Tissue and Nerve Inflammation in Pain Conditions. Pain Medicine, 2018, 19, 686-692.	1.9	9
64	Myeloperoxidase Molecular MRI Reveals Synergistic Combination Therapy in Murine Experimental Autoimmune Neuroinflammation. Radiology, 2019, 293, 158-165.	7.3	9
65	Multimodal Molecular Imaging Demonstrates Myeloperoxidase Regulation of Matrix Metalloproteinase Activity in Neuroinflammation. Molecular Neurobiology, 2019, 56, 954-962.	4.0	8
66	Myeloperoxidase exerts anti-tumor activity in glioma after radiotherapy. Neoplasia, 2022, 26, 100779.	5. 3	7
67	Molecular Imaging of Macrophage Enzyme Activity in Cardiac Inflammation. Current Cardiovascular Imaging Reports, 2014, 7, 9258.	0.6	6
68	D-Mannose Slows Glioma Growth by Modulating Myeloperoxidase Activity. Cancers, 2021, 13, 6360.	3.7	3
69	Does Brain Gadolinium Deposition Have Clinical Consequence? Lessons from Animal Studies. Radiology, 2021, 301, 417-419.	7.3	2
70	1001. Metabolic Biotinylation of Cell Surface Receptors for In Vivo Imaging. Molecular Therapy, 2006, 13, S386.	8.2	0
71	Magnetic Resonance Imaging Agents. , 2021, , 583-601.		0
72	Molecular immunoâ€imaging improves tumor detection in head and neck cancer. FASEB Journal, 2022, 36, e22092.	0.5	0