
## Patrick Blondin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11436453/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                            | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Contribution of the oocyte to embryo quality. Theriogenology, 2006, 65, 126-136.                                                                                                                   | 0.9 | 436       |
| 2  | Oocyte and follicular morphology as determining characteristics for developmental competence in bovine oocytes. Molecular Reproduction and Development, 1995, 41, 54-62.                           | 1.0 | 390       |
| 3  | Manipulation of Follicular Development to Produce Developmentally Competent Bovine Oocytes1.<br>Biology of Reproduction, 2002, 66, 38-43.                                                          | 1.2 | 192       |
| 4  | FSH withdrawal improves developmental competence of oocytes in the bovine model. Reproduction, 2012, 143, 165-171.                                                                                 | 1.1 | 99        |
| 5  | In Vitro Production of Embryos Alters Levels of Insulin-like Growth Factor-II Messenger Ribonucleic<br>Acid in Bovine Fetuses 63 Days After Transfer1. Biology of Reproduction, 2000, 62, 384-389. | 1.2 | 82        |
| 6  | Changes in granulosa cells' gene expression associated with increased oocyte competence in bovine.<br>Reproduction, 2013, 145, 555-565.                                                            | 1.1 | 74        |
| 7  | Enhanced early-life nutrition promotes hormone production and reproductive development in<br>Holstein bulls. Journal of Dairy Science, 2015, 98, 987-998.                                          | 1.4 | 69        |
| 8  | Analysis of Atresia in Bovine Follicles Using Different Methods: Flow Cytometry, Enzyme-Linked<br>Immunosorbent Assay, and Classic Histology1. Biology of Reproduction, 1996, 54, 631-637.         | 1.2 | 62        |
| 9  | Impact of the LH surge on granulosa cell transcript levels as markers of oocyte developmental competence in cattle. Reproduction, 2012, 143, 735-747.                                              | 1.1 | 51        |
| 10 | Effect of cow age on the inÂvitro developmental competence of oocytes obtained after FSH stimulation and coasting treatments. Theriogenology, 2016, 86, 1240-1246.                                 | 0.9 | 51        |
| 11 | Spermatozoa DNA methylation patterns differ due to peripubertal age in bulls. Theriogenology, 2018, 106, 21-29.                                                                                    | 0.9 | 50        |
| 12 | Enhanced early-life nutrition of Holstein bulls increases sperm production potential without decreasing postpubertal semen quality. Theriogenology, 2016, 86, 687-694.e2.                          | 0.9 | 49        |
| 13 | Transcriptional effect of the LH surge in bovine granulosa cells during the peri-ovulation period.<br>Reproduction, 2011, 141, 193-205.                                                            | 1.1 | 46        |
| 14 | Development of Skeletal Muscle and Expression of Candidate Genes in Bovine Fetuses from Embryos<br>Produced In Vivo or In Vitro1. Biology of Reproduction, 2002, 67, 401-408.                      | 1.2 | 45        |
| 15 | Effect of hormonal stimulation on bovine follicular response and oocyte developmental competence in a commercial operation. Theriogenology, 2006, 65, 102-115.                                     | 0.9 | 43        |
| 16 | Impact of male fertility status on the transcriptome of the bovine epididymis. Molecular Human<br>Reproduction, 2017, 23, 355-369.                                                                 | 1.3 | 39        |
| 17 | The age of the bull influences the transcriptome and epigenome of blastocysts produced by IVF.<br>Theriogenology, 2020, 144, 122-131.                                                              | 0.9 | 36        |
| 18 | Gene Expression Analysis of Bovine Oocytes With High Developmental Competence Obtained From FSH‧timulated Animals. Molecular Reproduction and Development, 2013, 80, 428-440.                      | 1.0 | 35        |

PATRICK BLONDIN

| #  | Article                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Binder of sperm 1 and epididymal sperm binding protein 1 are associated with different bull sperm subpopulations. Reproduction, 2012, 143, 759-771.                                                               | 1.1 | 33        |
| 20 | The effect of age and length of gonadotropin stimulation on the inÂvitro embryo development of<br>Holstein calf oocytes. Theriogenology, 2017, 104, 87-93.                                                        | 0.9 | 31        |
| 21 | Transcriptome meta-analysis of three follicular compartments and its correlation with ovarian<br>follicle maturity and oocyte developmental competence in cows. Physiological Genomics, 2016, 48,<br>633-643.     | 1.0 | 28        |
| 22 | Contribution of oocyte source and culture conditions to phenotypic and transcriptomic variation in commercially produced bovine blastocysts. Theriogenology, 2012, 78, 116-131.e3.                                | 0.9 | 25        |
| 23 | Sperm miRNAs— potential mediators of bull age and early embryo development. BMC Genomics, 2020, 21,<br>798.                                                                                                       | 1.2 | 24        |
| 24 | Proteomic Markers of Functional Sperm Population in Bovines: Comparison of Low- and High-Density<br>Spermatozoa Following Cryopreservation. Journal of Proteome Research, 2018, 17, 177-188.                      | 1.8 | 23        |
| 25 | Interval of gonadotropin administration for inÂvitro embryo production from oocytes collected from<br>Holstein calves between 2 and 6 months of age by repeated laparoscopy. Theriogenology, 2018, 116,<br>64-70. | 0.9 | 21        |
| 26 | Proteomic markers of low and high fertility bovine spermatozoa separated by Percoll gradient.<br>Molecular Reproduction and Development, 2019, 86, 999-1012.                                                      | 1.0 | 21        |
| 27 | Comprehensive cross production system assessment of the impact of in vitro microenvironment on the expression of messengers and long non-coding RNAs in the bovine blastocyst. Reproduction, 2011, 142, 99-112.   | 1.1 | 20        |
| 28 | Gene expression analysis of bovine oocytes at optimal coasting time combined with GnRH antagonist during theÂno-FSH period. Theriogenology, 2014, 81, 1092-1100.                                                  | 0.9 | 17        |
| 29 | Transcriptomic evaluation of bovine blastocysts obtained from peri-pubertal oocyte donors.<br>Theriogenology, 2017, 93, 111-123.                                                                                  | 0.9 | 16        |
| 30 | Preimplantation Genetic Testing for Aneuploidy Improves Live Birth Rates with In Vitro Produced<br>Bovine Embryos: A Blind Retrospective Study. Cells, 2021, 10, 2284.                                            | 1.8 | 14        |
| 31 | Cellular and molecular characterization of the impact of laboratory setup on bovine in vitro embryo production. Theriogenology, 2012, 77, 1767-1778.e1.                                                           | 0.9 | 11        |
| 32 | Genome-wide analysis of sperm DNA methylation from monozygotic twin bulls. Reproduction, Fertility<br>and Development, 2017, 29, 838.                                                                             | 0.1 | 10        |
| 33 | Specific imprinted genes demethylation in association with oocyte donor's age and culture conditions in bovine embryos assessed at day 7 and 12 post insemination. Theriogenology, 2020, 158, 321-330.            | 0.9 | 9         |
| 34 | Comparative analysis of granulosa cell gene expression in association with oocyte competence in FSH-stimulated Holstein cows. Reproduction, Fertility and Development, 2017, 29, 2324.                            | 0.1 | 8         |
| 35 | ASAS-SSR Triennial Reproduction Symposium: The use of natural cycle's follicular dynamic to improve ocyte quality in dairy cows and heifers1,2. Journal of Animal Science, 2018, 96, 2971-2976.                   | 0.2 | 7         |
| 36 | Influence of luteinizing hormone support on granulosa cells transcriptome in cattle. Animal Science<br>Journal, 2018, 89, 21-30.                                                                                  | 0.6 | 6         |

| #  | Article                                                                                                                                                                    | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Effect of heifer age on the granulosa cell transcriptome after ovarian stimulation. Reproduction,<br>Fertility and Development, 2018, 30, 980.                             | 0.1 | 4         |
| 38 | DNA methylation status of bovine blastocysts obtained from peripubertal oocyte donors. Molecular<br>Reproduction and Development, 2020, 87, 910-924.                       | 1.0 | 4         |
| 39 | The use of adenosine to inhibit oocyte meiotic resumption in Bos taurus during pre-IVM and its potential to improve oocyte competence. Theriogenology, 2020, 142, 207-215. | 0.9 | 3         |