Concetta C Dirusso

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1143632/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Reactive Oxygen Species (ROS) mediated degradation of organophosphate pesticides by the green microalgae Coccomyxa subellipsoidea. Bioresource Technology Reports, 2020, 11, 100461.	2.7	13
2	Deletion of fatty acid transport protein 2 (FATP2) in the mouse liver changes the metabolic landscape by increasing the expression of PPARα-regulated genes. Journal of Biological Chemistry, 2020, 295, 5737-5750.	3.4	20
3	Healthy pregnancies and essential fats: focus group discussions with Zambian women on dietary need and acceptability of a novel RUSF containing fish oil DHA. BMC Pregnancy and Childbirth, 2020, 20, 93.	2.4	2
4	Remodeling of Chlamydomonas Metabolism Using Synthetic Inducers Results in Lipid Storage during Growth. Plant Physiology, 2019, 181, 1029-1049.	4.8	12
5	Fatty acid transport proteinÂ2 reprograms neutrophils in cancer. Nature, 2019, 569, 73-78.	27.8	440
6	Transcriptome analysis-identified long noncoding RNA CRNDE in maintaining endothelial cell proliferation, migration, and tube formation. Scientific Reports, 2019, 9, 19548.	3.3	6
7	Inflammatory and Nutritional Biomarkers in the Plasma of Women in Zambia Reflect Low DHA and HIV Status. FASEB Journal, 2019, 33, 654.4.	0.5	0
8	RNA seq Analysis of Livers from Mice Lacking Fatty Acid Transport Protein 2 (FATP2) Demonstrate Metabolic Linkages in Genes Involved in PPARaâ€responsive Lipid Metabolic Pathways. FASEB Journal, 2019, 33, 488.12.	0.5	0
9	Evaluation of nâ€3 fatty acid status of pregnant women in Zambia with relation to HIV infection. FASEB Journal, 2019, 33, 654.5.	0.5	0
10	Long-Chain Omega-3 Polyunsaturated Fatty Acids Modulate Mammary Gland Composition and Inflammation. Journal of Mammary Gland Biology and Neoplasia, 2018, 23, 43-58.	2.7	10
11	Dietary omega-3 and omega-6 polyunsaturated fatty acids modulate hepatic pathology. Journal of Nutritional Biochemistry, 2018, 52, 92-102.	4.2	41
12	Immune regulation and anti-cancer activity by lipid inflammatory mediators. International Immunopharmacology, 2018, 65, 580-592.	3.8	29
13	Induction of oil accumulation by heat stress is metabolically distinct from N stress in the green microalgae Coccomyxa subellipsoidea C169. PLoS ONE, 2018, 13, e0204505.	2.5	17
14	Combining Mass Spectrometry and NMR Improves Metabolite Detection and Annotation. Journal of Proteome Research, 2018, 17, 4017-4022.	3.7	45
15	Long-chain omega-3 polyunsaturated fatty acids decrease mammary tumor growth, multiorgan metastasis and enhance survival. Clinical and Experimental Metastasis, 2018, 35, 797-818.	3.3	32
16	Innovations in improving lipid production: Algal chemical genetics. Progress in Lipid Research, 2018, 71, 101-123.	11.6	30
17	Carbon and Acyl Chain Flux during Stress-induced Triglyceride Accumulation by Stable Isotopic Labeling of the Polar Microalga Coccomyxa subellipsoidea C169. Journal of Biological Chemistry, 2017, 292, 361-374.	3.4	20
18	Identification and Metabolite Profiling of Chemical Activators of Lipid Accumulation in Green Algae. Plant Physiology, 2017, 174, 2146-2165.	4.8	45

Concetta C Dirusso

#	Article	IF	CITATIONS
19	Fatty acid transport proteins: targeting FATP2 as a gatekeeper involved in the transport of exogenous fatty acids. MedChemComm, 2016, 7, 612-622.	3.4	45
20	Phenotypic screening identifies Brefeldin A/Ascotoxin as an inducer of lipid storage in the algae Chlamydomonas reinhardtii. Algal Research, 2015, 11, 74-84.	4.6	12
21	Triacylglycerol synthesis during nitrogen stress involves the prokaryotic lipid synthesis pathway and acyl chain remodeling in the microalgae Coccomyxa subellipsoidea. Algal Research, 2015, 10, 110-120.	4.6	47
22	Chemical inhibition of fatty acid absorption and cellular uptake limits lipotoxic cell death. Biochemical Pharmacology, 2015, 98, 167-181.	4.4	43
23	Fatty acid transport protein-2 inhibitor Grassofermata/CB5 protects cells against lipid accumulation and toxicity. Biochemical and Biophysical Research Communications, 2015, 465, 534-541.	2.1	17
24	Integrated Quantitative Analysis of Nitrogen Stress Response in <i>Chlamydomonas reinhardtii</i> Using Metabolite and Protein Profiling. Journal of Proteome Research, 2014, 13, 1373-1396.	3.7	145
25	Triglyceride quantification by catalytic saturation and LC–MS/MS reveals an evolutionary divergence in regioisometry among green microalgae. Algal Research, 2014, 5, 23-31.	4.6	13
26	Overexpression of human fatty acid transport protein 2/very long chain acyl-CoA synthetase 1 (FATP2/Acsvl1) reveals distinct patterns of trafficking of exogenous fatty acids. Biochemical and Biophysical Research Communications, 2013, 440, 743-748.	2.1	34
27	Rapid Detection and Quantification of Triacylglycerol by HPLC–ELSD in <i>Chlamydomonas reinhardtii</i> and <i>Chlorella</i> Strains. Lipids, 2013, 48, 1035-1049.	1.7	34
28	Human Fatty Acid Transport Protein 2a/Very Long Chain Acyl-CoA Synthetase 1 (FATP2a/Acsvl1) Has a Preference in Mediating the Channeling of Exogenous n-3 Fatty Acids into Phosphatidylinositol. Journal of Biological Chemistry, 2011, 286, 30670-30679.	3.4	52
29	Defining a relationship between dietary fatty acids and the cytochrome P450 system in a mouse model of fatty liver disease. Physiological Genomics, 2011, 43, 121-135.	2.3	15
30	Identification and characterization of small compound inhibitors of human FATP2. Biochemical Pharmacology, 2010, 79, 990-999.	4.4	35
31	Distinguishing Biochemical Activities of Splice Variants of Human FATP2. FASEB Journal, 2010, 24, 691.2.	0.5	Ο
32	Targeting the Fatty Acid Transport Proteins (FATP) to Understand the Mechanisms Linking Fatty Acid Transport to Metabolism. Immunology, Endocrine and Metabolic Agents in Medicinal Chemistry, 2009, 9, 11-17.	0.5	38
33	Methods to Monitor Fatty Acid Transport Proceeding Through Vectorial Acylation. , 2009, 580, 233-249.		16
34	Fatty acid transport and activation and the expression patterns of genes involved in fatty acid trafficking. Archives of Biochemistry and Biophysics, 2008, 477, 363-371.	3.0	59
35	Functional domains of the fatty acid transport proteins: Studies using protein chimeras. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2008, 1781, 135-143.	2.4	33
36	Dietary polyunsaturated fatty acids (C18:2 ω6 and C18:3 ω3) do not suppress hepatic lipogenesis. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2008, 1781, 406-414.	2.4	28

CONCETTA C DIRUSSO

#	Article	IF	CITATIONS
37	High-throughput screening for fatty acid uptake inhibitors in humanized yeast identifies atypical antipsychotic drugs that cause dyslipidemias. Journal of Lipid Research, 2008, 49, 230-244.	4.2	30
38	Characterization of the Biochemical Activities Associated with Splice Variants of Human FATP2. FASEB Journal, 2008, 22, 806.1.	0.5	0
39	Topology of the yeast fatty acid transport protein Fat1p: mechanistic implications for functional domains on the cytosolic surface of the plasma membrane. Journal of Lipid Research, 2007, 48, 2354-2364.	4.2	27
40	Yeast acyl-CoA synthetases at the crossroads of fatty acid metabolism and regulation. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2007, 1771, 286-298.	2.4	174
41	Mechanistic studies of the long chain acyl-CoA synthetase Faa1p from Saccharomyces cerevisiae. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2007, 1771, 1246-1253.	2.4	19
42	Vectorial Acylation: Linking Fatty Acid Transport and Activation to Metabolic Trafficking. Novartis Foundation Symposium, 2007, 286, 127-141.	1.1	38
43	Identification of Two Splice Variants of Human FATP2, Which Distinguish Fatty Acid Transport and Activation Activities. FASEB Journal, 2007, 21, A236.	0.5	0
44	Fatty acid transport by vectorial acylation in mammals: Roles played by different isoforms of rat long-chain acyl-CoA synthetases. Archives of Biochemistry and Biophysics, 2006, 447, 46-52.	3.0	44
45	Direct interaction of Saccharomyces cerevisiae Faa1p with the Omi/HtrA protease orthologue Ynm3p alters lipid homeostasis. Molecular Genetics and Genomics, 2006, 275, 330-343.	2.1	15
46	A live-cell high-throughput screening assay for identification of fatty acid uptake inhibitors. Analytical Biochemistry, 2005, 336, 11-19.	2.4	48
47	Comparative Biochemical Studies of the Murine Fatty Acid Transport Proteins (FATP) Expressed in Yeast. Journal of Biological Chemistry, 2005, 280, 16829-16837.	3.4	119
48	Long-chain Acyl-CoA Synthetase 6 Preferentially Promotes DHA Metabolism. Journal of Biological Chemistry, 2005, 280, 10817-10826.	3.4	100
49	Hepatic Gene Expression Changes in Mouse Models with Liver-specific Deletion or Global Suppression of the NADPH-Cytochrome P450 Reductase Gene. Journal of Biological Chemistry, 2005, 280, 31686-31698.	3.4	59
50	Revised nomenclature for the mammalian long-chain acyl-CoA synthetase gene family. Journal of Lipid Research, 2004, 45, 1958-1961.	4.2	142
51	Rat Long Chain Acyl-CoA Synthetase 5, but Not 1, 2, 3, or 4, Complements Escherichia coli fadD. Journal of Biological Chemistry, 2004, 279, 11163-11169.	3.4	21
52	Bacterial Long Chain Fatty Acid Transport: Gateway to a Fatty Acid-responsive Signaling System. Journal of Biological Chemistry, 2004, 279, 49563-49566.	3.4	92
53	Vectorial Acylation in Saccharomyces cerevisiae. Journal of Biological Chemistry, 2003, 278, 16414-16422.	3.4	108
54	Transmembrane Movement of Exogenous Long-Chain Fatty Acids: Proteins, Enzymes, and Vectorial Esterification. Microbiology and Molecular Biology Reviews, 2003, 67, 454-472.	6.6	200

#	Article	IF	CITATIONS
55	Fatty Acid Transport in Saccharomyces cerevisiae. Journal of Biological Chemistry, 2002, 277, 31062-31071.	3.4	112
56	Functional Role of Fatty Acyl-Coenzyme A Synthetase in the Transmembrane Movement and Activation of Exogenous Long-chain Fatty Acids. Journal of Biological Chemistry, 2002, 277, 29369-29376.	3.4	121
57	Two different pathways are involved in the β-oxidation of n-alkanoic and n-phenylalkanoic acids in Pseudomonas putida U: genetic studies and biotechnological applications. Molecular Microbiology, 2001, 39, 863-874.	2.5	83
58	The Acyl-CoA Synthetases Encoded within FAA1 andFAA4 in Saccharomyces cerevisiaeFunction as Components of the Fatty Acid Transport System Linking Import, Activation, and Intracellular Utilization. Journal of Biological Chemistry, 2001, 276, 37051-37059.	3.4	153
59	Crystallization and X-ray diffraction studies of the fatty-acid responsive transcription factor FadR fromEscherichia coli. Acta Crystallographica Section D: Biological Crystallography, 2000, 56, 469-471.	2.5	6
60	Murine FATP alleviates growth and biochemical deficiencies of yeast fat1î" strains. FEBS Journal, 2000, 267, 4422-4433.	0.2	50
61	Long-Chain Acyl-CoA–Dependent Regulation of Gene Expression in Bacteria, Yeast and Mammals. Journal of Nutrition, 2000, 130, 305S-309S.	2.9	80
62	Multiple Factors Independently Regulate hilA and Invasion Gene Expression in Salmonella enterica Serovar Typhimurium. Journal of Bacteriology, 2000, 182, 1872-1882.	2.2	197
63	Affinity Labeling Fatty Acyl-CoA Synthetase with 9-p-Azidophenoxy Nonanoic Acid and the Identification of the Fatty Acid-binding Site. Journal of Biological Chemistry, 2000, 275, 38547-38553.	3.4	33
64	The Amino-Terminal Region of the Long-Chain Fatty Acid Transport Protein FadL Contains an Externally Exposed Domain Required for Bacteriophage T2 Binding. Archives of Biochemistry and Biophysics, 2000, 377, 324-333.	3.0	13
65	Possible Roles of Long-chain Fatty Acyl-CoA Esters in the Fusion of Biomembranes. , 2000, 34, 175-231.		4
66	The medium-/long-chain fatty acyl-CoA dehydrogenase (fadF) gene of Salmonella typhimurium is a phase 1 starvation-stress response (SSR) locus. Microbiology (United Kingdom), 1999, 145, 15-31.	1.8	62
67	Title is missing!. , 1999, 192, 41-52.		51
68	Molecular inroads into the regulation and metabolism of fatty acids, lessons from bacteria. Progress in Lipid Research, 1999, 38, 129-197.	11.6	129
69	Energetics Underlying the Process of Long-Chain Fatty Acid Transport. Archives of Biochemistry and Biophysics, 1999, 365, 299-306.	3.0	20
70	Long-chain fatty acid transport in bacteria and yeast. Paradigms for defining the mechanism underlying this protein-mediated process. , 1999, , 41-52.		11
71	The fats ofEscherichia coliduring infancy and old age: regulation by global regulators, alarmones and lipid intermediates. Molecular Microbiology, 1998, 27, 1-8.	2.5	100
72	Fatty Acyl-CoA Binding Domain of the Transcription Factor FadR. Journal of Biological Chemistry, 1998, 273, 33652-33659.	3.4	54

Concetta C Dirusso

#	Article	IF	CITATIONS
73	Disruption of the Saccharomyces cerevisiae Homologue to the Murine Fatty Acid Transport Protein Impairs Uptake and Growth on Long-chain Fatty Acids. Journal of Biological Chemistry, 1997, 272, 8531-8538.	3.4	152
74	Mutational Analysis of a Fatty Acyl-Coenzyme A Synthetase Signature Motif Identifies Seven Amino Acid Residues That Modulate Fatty Acid Substrate Specificity. Journal of Biological Chemistry, 1997, 272, 4896-4903.	3.4	141
75	Characterization of the Fatty Acid-responsive Transcription Factor FadR. Journal of Biological Chemistry, 1997, 272, 30645-30650.	3.4	59
76	Analysis of Acyl Coenzyme A Binding to the Transcription Factor FadR and Identification of Amino Acid Residues in the Carboxyl Terminus Required for Ligand Binding. Journal of Biological Chemistry, 1995, 270, 1092-1097.	3.4	63
77	Novel DNA-sepharose purification of the FadR transcription factor. Journal of Chromatography A, 1994, 677, 45-52.	3.7	22
78	Molecular and biochemical analyses of fatty acid transport, metabolism, and gene regulation in Escherichia coli. Lipids and Lipid Metabolism, 1994, 1210, 123-145.	2.6	139
79	Nucleotide sequence of thefadRgene, a multifunctional regulator of fatty acid metabolism inEscherichia coli. Nucleic Acids Research, 1988, 16, 7995-8009.	14.5	39
80	A method for extracting high-molecular-weight deoxyribonucleic acid from fungi. Analytical Biochemistry, 1982, 119, 158-163.	2.4	200
81	Multiple forms of brain adenylate cyclase: Stimulation by Mn2+. Biochimica Et Biophysica Acta - Biomembranes, 1977, 485, 243-247.	2.6	7