
Robert P Lucht

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1143315/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Nitrogen and hydrogen CARS temperature measurements in a hydrogen/air flame using a near-adiabatic flat-flame burner. Combustion and Flame, 1997, 109, 323-331.	5.2	164
2	Femtosecond coherent anti-Stokes Raman scattering measurement of gas temperatures from frequency-spread dephasing of the Raman coherence. Applied Physics Letters, 2006, 89, 251112.	3.3	131
3	Two-photon-excited fluorescence measurement of hydrogen atoms in flames. Optics Letters, 1983, 8, 365.	3.3	119
4	Gas-phase single-shot thermometry at 1 kHz using fs-CARS spectroscopy. Optics Letters, 2009, 34, 3857.	3.3	94
5	Temperature and CO2 concentration measurements in the exhaust stream of a liquid-fueled combustor using dual-pump coherent anti-Stokes Raman scattering (CARS) spectroscopy. Combustion and Flame, 2004, 138, 273-284.	5.2	71
6	Theory of femtosecond coherent anti-Stokes Raman scattering spectroscopy of gas-phase transitions. Journal of Chemical Physics, 2007, 127, 044316.	3.0	68
7	Temperature measurements in reacting flows by time-resolved femtosecond coherent anti-Stokes Raman scattering (fs-CARS) spectroscopy. Optics Communications, 2008, 281, 319-325.	2.1	65
8	Theoretical modeling of single-laser-shot, chirped-probe-pulse femtosecond coherent anti-Stokes Raman scattering thermometry. Applied Physics B: Lasers and Optics, 2011, 104, 699-714.	2.2	62
9	Measurements of OH mole fraction and temperature up to 20 kHz by using a diode-laser-based UV absorption sensor. Applied Optics, 2005, 44, 6729.	2.1	57
10	Theoretical calculation of line shapes and saturation effects in polarization spectroscopy. Journal of Chemical Physics, 1998, 109, 5830-5843.	3.0	55
11	Two-color, two-photon laser-induced polarization spectroscopy (LIPS) measurements of atomic hydrogen in near-adiabatic, atmospheric pressure hydrogen/air flames. Combustion and Flame, 2004, 137, 523-537.	5.2	52
12	Electronic-resonance-enhanced coherent anti-Stokes Raman spectroscopy of nitric oxide. Applied Physics Letters, 2003, 83, 1887-1889.	3.3	48
13	Development of injection-seeded, pulsed optical parametric generator/oscillator systems for high-resolution spectroscopy. Applied Physics B: Lasers and Optics, 2005, 80, 669-680.	2.2	45
14	Simultaneous 5 kHz OH-PLIF/PIV for the study of turbulent combustion at engine conditions. Applied Physics B: Lasers and Optics, 2015, 118, 109-130.	2.2	42
15	Diode-laser-based sensor for ultraviolet absorption measurements of atomic mercury. Applied Physics B: Lasers and Optics, 2007, 87, 341-353.	2.2	35
16	Chirped probe pulse femtosecond coherent anti-Stokes Raman scattering thermometry at 5 kHz in a Gas Turbine Model Combustor. Proceedings of the Combustion Institute, 2015, 35, 3731-3738.	3.9	34
17	The development of an optically accessible, high-power combustion test rig. Review of Scientific Instruments, 2014, 85, 035105.	1.3	33
18	Atomic hydrogen concentration profile measurements in stagnation-flow diamond-forming flames using three-photon excitation laser-induced fluorescence. Journal of Applied Physics, 1998, 83, 2315-2326.	2.5	32

#	Article	IF	CITATIONS
19	Simultaneous acquisition of pure rotational and vibrational nitrogen spectra using three-laser coherent anti-Stokes Raman spectroscopy. Optics Letters, 1987, 12, 386.	3.3	31
20	Effects of N2–CO polarization beating on femtosecond coherent anti-Stokes Raman scattering spectroscopy of N2. Applied Physics Letters, 2009, 94, 144101.	3.3	31
21	Development of a combined pure rotational and vibrational coherent anti-Stokes Raman scattering system. Optics Letters, 2013, 38, 1340.	3.3	26
22	High-repetition-rate planar measurements in the wake of a reacting jet injected into a swirling vitiated crossflow. Combustion and Flame, 2016, 163, 241-257.	5.2	26
23	Collisional dependence of polarization spectroscopy with a picosecond laser. Journal of Chemical Physics, 2000, 113, 2263-2269.	3.0	25
24	Microexplosion Investigation of Monomethylhydrazine Gelled Droplet with OH Planar Laser-Induced Fluorescence. Journal of Propulsion and Power, 2013, 29, 1303-1310.	2.2	24
25	Simultaneous CO concentration and temperature measurements using tunable diode laser absorption spectroscopy near 2.3Ål¼m. Applied Physics B: Lasers and Optics, 2014, 117, 7-18.	2.2	24
26	Dependence of partially saturated polarization spectroscopy signals on pump intensity and collision rate. Physical Review A, 2001, 64, .	2.5	23
27	Measurement of nitric oxide concentrations in flames by using electronic-resonance-enhanced coherent anti-Stokes Raman scattering. Optics Letters, 2006, 31, 3357.	3.3	23
28	Detection of atomic hydrogen in flames using picosecond two-color two-photon-resonant six-wave-mixing spectroscopy. Applied Optics, 2007, 46, 3921.	2.1	23
29	Dual-pump vibrational CARS measurements of temperature and species concentrations in turbulent premixed flames with CO2 addition. Combustion and Flame, 2017, 181, 239-250.	5.2	22
30	Flame stabilization mechanism in reacting jets in swirling vitiated crossflow. Combustion and Flame, 2019, 207, 302-313.	5.2	22
31	Polarization suppression of the nonresonant background in femtosecond coherent anti-Stokes Raman scattering for flame thermometry at 5 kHz. Optics Express, 2012, 20, 21495.	3.4	21
32	5 kHz thermometry in a swirl-stabilized gas turbine model combustor using chirped probe pulse femtosecond CARS. Part 1: Temporally resolved swirl-flame thermometry. Combustion and Flame, 2016, 173, 441-453.	5.2	21
33	Emission Measurements and CH* Chemiluminescence of a Staged Combustion Rig for Stationary Gas Turbine Applications. Journal of Engineering for Gas Turbines and Power, 2012, 134, .	1.1	20
34	Resonant degenerate four-wave mixing spectroscopy of transitions with degenerate energy levels: Saturation and polarization effects. Journal of Chemical Physics, 1999, 111, 10008-10020.	3.0	19
35	Time-Resolved Thermal Boundary-Layer Structure in a Pulsatile Reversing Channel Flow. Journal of Heat Transfer, 2001, 123, 655-664.	2.1	19
36	Polarization spectroscopy using short-pulse lasers: Theoretical analysis. Journal of Chemical Physics, 2002, 116, 571-580.	3.0	19

#	Article	IF	CITATIONS
37	CHEMISTRY: Femtosecond Lasers for Molecular Measurements. Science, 2007, 316, 207-208.	12.6	18
38	Chirped-probe-pulse femtosecond coherent anti-Stokes Raman scattering concentration measurements. Journal of the Optical Society of America B: Optical Physics, 2013, 30, 188.	2.1	18
39	NOX reduction in an axially staged gas turbine model combustor through increase in the combustor exit Mach number. Combustion and Flame, 2020, 212, 282-294.	5.2	18
40	Collisional effects on molecular dynamics in electronic-resonance-enhanced CARS. Journal of Modern Optics, 2008, 55, 3263-3272.	1.3	16
41	Effects of collisions on electronic-resonance-enhanced coherent anti-Stokes Raman scattering of nitric oxide. Journal of Chemical Physics, 2009, 130, 214304.	3.0	16
42	Dual-pump CARS temperature and major species concentration measurements in counter-flow methane flames using narrowband pump and broadband Stokes lasers. Combustion and Flame, 2010, 157, 1390-1399.	5.2	15
43	Single-laser-shot femtosecond coherent anti-Stokes Raman scattering thermometry at 1000Hz in unsteady flames. Proceedings of the Combustion Institute, 2011, 33, 839-845.	3.9	14
44	Investigation of Gas Heating by Nanosecond Repetitively Pulsed Glow Discharges Used for Actuation of a Laminar Methane-Air Flame. Combustion Science and Technology, 2017, 189, 2012-2022.	2.3	14
45	Technique developments and performance analysis of chirped-probe-pulse femtosecond coherent anti-Stokes Raman scattering combustion thermometry. Applied Optics, 2017, 56, 8797.	1.8	14
46	Single-laser-shot detection of nitric oxide in reacting flows using electronic resonance enhanced coherent anti-Stokes Raman scattering. Applied Physics Letters, 2008, 93, 091115.	3.3	13
47	Structure and dynamics of the wake of a reacting jet injected into a swirling, vitiated crossflow in a staged combustion system. Experiments in Fluids, 2015, 56, 1.	2.4	13
48	Vibrational CARS thermometry and one-dimensional numerical simulations in CH4/H2/air partially-premixed flames. International Journal of Hydrogen Energy, 2015, 40, 6959-6969.	7.1	13
49	5 kHz thermometry in a swirl-stabilized gas turbine model combustor using chirped probe pulse femtosecond CARS. Part 2. Analysis of swirl flame dynamics. Combustion and Flame, 2016, 173, 454-467.	5.2	13
50	Planar laser imaging and modeling of matrix-assisted pulsed-laser evaporation direct write in the bubble regime. Journal of Applied Physics, 2006, 100, 033107.	2.5	12
51	CARS thermometry in laminar sooting ethylene-air co-flow diffusion flames with nitrogen dilution. Combustion and Flame, 2019, 208, 37-44.	5.2	12
52	Five kHz thermometry in turbulent spray flames using chirped-probe pulse femtosecond CARS, part I: Processing and interference analysis. Combustion and Flame, 2019, 200, 405-416.	5.2	12
53	High dynamic range thermometry at 5 kHz in hydrogen–air diffusion flame using chirpedâ€probeâ€pulse femtosecond coherent antiâ€stokes Raman scattering. Journal of Raman Spectroscopy, 2016, 47, 177-188.	2.5	10
54	Effects of self-phase modulation (SPM) on femtosecond coherent anti-Stokes Raman scattering spectroscopy. Optics Express, 2019, 27, 33954.	3.4	10

#	Article	IF	CITATIONS
55	Vibrational CARS thermometry and one-dimensional simulations in laminar H 2 /air counter-flow diffusion flames. International Journal of Hydrogen Energy, 2015, 40, 10662-10672.	7.1	8
56	Effect of the nature of vitiated crossflow on the flow-field of a transverse reacting jet. Experiments in Fluids, 2017, 58, 1.	2.4	8
57	A model combustor for studying a reacting jet in an oscillating crossflow. Review of Scientific Instruments, 2017, 88, 065112.	1.3	8
58	Impact of moderate pump–Stokes chirp on femtosecond coherent antiâ€ 6 tokes Raman scattering spectra. Journal of Raman Spectroscopy, 2020, 51, 115-124.	2.5	8
59	CO2 chirped-probe-pulse femtosecond CARS thermometry. Proceedings of the Combustion Institute, 2021, 38, 1599-1606.	3.9	8
60	Structure and mixing of a transient flow of helium injected into an established flow of nitrogen: two dimensional measurement and simulation. Experiments in Fluids, 2009, 46, 559-575.	2.4	6
61	Electronic-resonance-enhanced coherent anti-Stokes Raman scattering of nitric oxide: Saturation and Stark effects. Journal of Chemical Physics, 2010, 133, 084310.	3.0	6
62	The development and performance of a perforated plate burner to produce vitiated flow with negligible swirl under engine-relevant gas turbine conditions. Review of Scientific Instruments, 2019, 90, 075107.	1.3	6
63	Transverse injection of rich, premixed, natural gas-air and natural gas-hydrogen-air reacting jets into high-speed vitiated crossflow at engine-relevant conditions. International Journal of Hydrogen Energy, 2021, 46, 35718-35738.	7.1	4
64	Saturated-Fluorescence Measurements of the Hydroxyl Radical. ACS Symposium Series, 1980, , 145-151.	0.5	3
65	Measurement and calculation of the Qâ€branch spectrum of nitrogen using inverse Raman spectroscopy and cw Ramanâ€induced polarization spectroscopy. Journal of Raman Spectroscopy, 2008, 39, 68-78.	2.5	3
66	Pure rotational coherent anti‣tokes Raman scattering spectroscopy of nitric oxide: Determination of Raman tensor invariants. Journal of Raman Spectroscopy, 2020, 51, 807-828.	2.5	2
67	Sooting Jet Diffusion Flame Thermometry at 5 kHz using Femtosecond Coherent Anti-Stokes Raman Scattering. , 2014, , .		2
68	Chirped Probe Pulse Femtosecond Cars H ₂ Measurements At Elevated Pressure And Temperature. , 2022, , .		2
69	Nonperturbative modeling of two-photon absorption in a three-state system. Journal of Chemical Physics, 2004, 121, 9820-9829.	3.0	1
70	Reacting Jets in Vitiated Crossflow at High Speeds: The Development of an Optically-Accessible Secondary Combustion Zone. , 2019, , .		1
71	Two-color, two-photon laser-induced polarization spectroscopy (LIPS) measurements of atomic hydrogen in near-adiabatic, atmospheric pressure hydrogen/air flames. Combustion and Flame, 2004, 137, 523-537.	5.2	1
72	Femtosecond coherent anti-Stokes Raman scattering measurement of gas-phase species and temperature. , 2008, , .		0

#	Article	IF	CITATIONS
73	Application of a Two-color Polarization Spectroscopy Technique for Detection of Carbon Monoxide. , 2014, , .		Ο
74	Two-color Polarization Spectroscopy Technique for Probing Collisionally Induced Resonances of Nitric Oxide. , 2015, , .		0
75	Two-photon-absorption line strengths for nitric oxide: Comparison of theory and sub-Doppler, laser-induced fluorescence measurements. Journal of Chemical Physics, 2017, 146, 124311.	3.0	Ο
76	Effects of moderate pump and Stokes chirp on chirped-probe pulse femtosecond coherent anti-Stokes Raman scattering thermometry. , 2018, , .		0
77	Investigation of the Chirped Probe Pulse Femtosecond Coherent Anti-Stokes Raman Scattering at High Pressure. , 2019, , .		0
78	Dual-Broadband Coherent anti-Stokes Raman Scattering for Investigating Pure Rotational Raman Spectra of Nitric Oxide. , 2019, , .		0
79	Theory of Single-Pulse Femtosecond Coherent Anti-Stokes Raman Scattering Using a Chirped Probe Beam. , 2008, , .		Ο
80	Fs-CARS for High-Bandwidth, Collision-Free Temperature Measurements. , 2008, , .		0
81	Kilohertz-Rate, Collision-Free, Gas-Phase Thermometry with Femtosecond CARS. , 2008, , .		Ο
82	Single-Pulse Femtosecond Coherent Anti-Stokes Raman Scattering Temperature Measurements Using a Chirped-Pulse Probe Beam. , 2009, , .		0
83	Effects of Molecular Interference on Femtosecond-CARS Spectroscopy. , 2010, , .		Ο
84	Chirped-Probe-Pulse Femtosecond Coherent Anti-Stokes Raman Scattering for Single-Laser-Pulse Flame Temperature Measurements. , 2010, , .		0
85	Theory of Chirped-Probe Pulse Single-Shot Femtosecond Coherent Anti-Stokes Raman Scattering Thermometry in Flames at 1000 Hz. , 2010, , .		0
86	Study of Swirl Stabilized Burner with Interchangeable Swirler Using Chirped-Probe-Pulse Femtosecond Coherent Anti-Stokes Raman Scattering for Thermometry and CH4 Concentration Measurements. , 2015, , .		0