
Kaibao Nie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11430819/publications.pdf Version: 2024-02-01

KAIRAO NIE

#	Article	IF	CITATIONS
1	Speech recognition with amplitude and frequency modulations. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 2293-2298.	3.3	337
2	Encoding Frequency Modulation to Improve Cochlear Implant Performance in Noise. IEEE Transactions on Biomedical Engineering, 2005, 52, 64-73.	2.5	171
3	Development and Validation of the University of Washington Clinical Assessment of Music Perception Test. Ear and Hearing, 2009, 30, 411-418.	1.0	146
4	Spectral and Temporal Cues in Cochlear Implant Speech Perception. Ear and Hearing, 2006, 27, 208-217.	1.0	109
5	On the dichotomy in auditory perception between temporal envelope and fine structure cues (L). Journal of the Acoustical Society of America, 2004, 116, 1351-1354.	0.5	107
6	Acoustic temporal modulation detection and speech perception in cochlear implant listeners. Journal of the Acoustical Society of America, 2011, 130, 376-388.	0.5	96
7	Prosthetic Implantation of the Human Vestibular System. Otology and Neurotology, 2014, 35, 136-147.	0.7	71
8	Implantation of the Semicircular Canals With Preservation of Hearing and Rotational Sensitivity. Otology and Neurotology, 2012, 33, 789-796.	0.7	69
9	Vestibular implantation and longitudinal electrical stimulation of the semicircular canal afferents in human subjects. Journal of Neurophysiology, 2015, 113, 3866-3892.	0.9	57
10	Sensitivity of psychophysical measures to signal processor modifications in cochlear implant users. Hearing Research, 2010, 262, 1-8.	0.9	53
11	Relationship Between Behavioral and Physiological Spectral-Ripple Discrimination. JARO - Journal of the Association for Research in Otolaryngology, 2011, 12, 375-393.	0.9	50
12	Contribution of frequency modulation to speech recognition in noise. Journal of the Acoustical Society of America, 2005, 118, 2412-2420.	0.5	41
13	Postural responses to electrical stimulation of the vestibular end organs in human subjects. Experimental Brain Research, 2013, 229, 181-195.	0.7	40
14	Characterization of the Electrically Evoked Compound Action Potential of the Vestibular Nerve. Otology and Neurotology, 2011, 32, 88-97.	0.7	30
15	An Experimental Vestibular Neural Prosthesis: Design and Preliminary Results With Rhesus Monkeys Stimulated With Modulated Pulses. IEEE Transactions on Biomedical Engineering, 2013, 60, 1685-1692.	2.5	29
16	Improved Perception of Music With a Harmonic Based Algorithm for Cochlear Implants. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2013, 21, 684-694.	2.7	27
17	Optimal Combination of Neural Temporal Envelope and Fine Structure Cues to Explain Speech Identification in Background Noise. Journal of Neuroscience, 2014, 34, 12145-12154.	1.7	25
18	Auditory outcomes following implantation and electrical stimulation of the semicircular canals. Hearing Research, 2012, 287, 51-56.	0.9	22

Καιβάο Νιέ

#	Article	IF	CITATIONS
19	Longitudinal performance of an implantable vestibular prosthesis. Hearing Research, 2015, 322, 200-211.	0.9	22
20	Results From a Second-Generation Vestibular Implant in Human Subjects: Diagnosis May Impact Electrical Sensitivity of Vestibular Afferents. Otology and Neurotology, 2020, 41, 68-77.	0.7	22
21	Improved perception of speech in noise and Mandarin tones with acoustic simulations of harmonic coding for cochlear implants. Journal of the Acoustical Society of America, 2012, 132, 3387-3398.	0.5	18
22	Hybrid Music Perception Outcomes: Implications for Melody and Timbre Recognition in Cochlear Implant Recipients. Otology and Neurotology, 2019, 40, e283-e289.	0.7	13
23	Real-time communication of head velocity and acceleration for an externally mounted vestibular prosthesis. , 2011, 2011, 3537-41.		12
24	Longitudinal performance of a vestibular prosthesis as assessed by electrically evoked compound action potential recording. , 2012, 2012, 6128-31.		12
25	Loss of Afferent Vestibular Input Produces Central Adaptation and Increased Gain of Vestibular Prosthetic Stimulation. JARO - Journal of the Association for Research in Otolaryngology, 2016, 17, 19-35.	0.9	10
26	The ability of cochlear implant users to use temporal envelope cues recovered from speech frequency modulation. Journal of the Acoustical Society of America, 2012, 132, 1113-1119.	0.5	9
27	Harmonic coherent demodulation for improving sound coding in cochlear implants. , 2010, , .		8
28	Measuring Sound Detection and Reaction Time in Infant and Toddler Cochlear Implant Recipients Using an Observer-Based Procedure: A First Report. Ear and Hearing, 2009, 30, 250-261.	1.0	7
29	The Dynamics of Prosthetically Elicited Vestibulo-Ocular Reflex Function Across Frequency and Context in the Rhesus Monkey. Frontiers in Neuroscience, 2018, 12, 88.	1.4	7
30	Maximizing the Spectral and Temporal Benefits of Two Clinically Used Sound Processing Strategies for Cochlear Implants. Trends in Amplification, 2012, 16, 201-210.	2.4	6
31	A perception-based processing strategy for cochlear implants and speech coding. , 2004, 2004, 4205-8.		1
32	Fluctuations in Vestibular Afferent Excitability in Menière's Disease. Otology and Neurotology, 2020, 41, 810-816.	0.7	1
33	Using neural network and principal component analysis to study vowel recognition with temporal envelope cues. , 2004, 2004, 4592-5.		Ο