Robin Nusslock

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11429482/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Threat Neurocircuitry Predicts the Development of Anxiety and Depression Symptoms in a Longitudinal Study. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2023, 8, 102-110.	1.1	4
2	A Multivoxel Pattern Analysis of Anhedonia During Fear Extinction: Implications for Safety Learning. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2023, 8, 417-425.	1.1	2
3	Outcome valence and stimulus frequency affect neural responses to rewards and punishments. Psychophysiology, 2022, 59, e13981.	1.2	7
4	Neurobiological and behavioral mechanisms of circadian rhythm disruption in bipolar disorder: A critical multiâ€disciplinary literature review and agenda for future research from the ISBD task force on chronobiology. Bipolar Disorders, 2022, 24, 232-263.	1.1	36
5	Individual differences in threat and reward neural circuitry activation: Testing dimensional models of early adversity, anxiety and depression. European Journal of Neuroscience, 2022, 55, 2739-2753.	1.2	8
6	Bipolar spectrum disorders are associated with increased gray matter volume in the medial orbitofrontal cortex and nucleus accumbens. JCPP Advances, 2022, 2, .	1.4	1
7	The Interplay Between Reward-Relevant Life Events and Trait Reward Sensitivity in Neural Responses to Reward Cues. Clinical Psychological Science, 2022, 10, 869-884.	2.4	4
8	Neural mechanisms of motor dysfunction in individuals at clinical high-risk for psychosis: Evidence for impairments in motor activation , 2022, 131, 375-391.		2
9	Δ9-THC reduces reward-related brain activity in healthy adults. Psychopharmacology, 2022, 239, 2829-2840.	1.5	6
10	Association of Inflammatory Activity With Larger Neural Responses to Threat and Reward Among Children Living in Poverty. American Journal of Psychiatry, 2021, 178, 313-320.	4.0	42
11	The neuroscience of positive emotions and affect: Implications for cultivating happiness and wellbeing. Neuroscience and Biobehavioral Reviews, 2021, 121, 220-249.	2.9	86
12	Dysregulation of threat neurocircuitry during fear extinction: the role of anhedonia. Neuropsychopharmacology, 2021, 46, 1650-1657.	2.8	23
13	Goal-striving tendencies moderate the relationship between reward-related brain function and peripheral inflammation. Brain, Behavior, and Immunity, 2021, 94, 60-70.	2.0	14
14	Neural reward circuit dysfunction as a risk factor for bipolar spectrum disorders and substance use disorders: A review and integration. Clinical Psychology Review, 2021, 87, 102035.	6.0	12
15	Resting-State Functional Connectivity of the Central Executive Network Moderates the Relationship Between Neighborhood Violence and Proinflammatory Phenotype in Children. Biological Psychiatry, 2021, 90, 165-172.	0.7	11
16	The Value of Hyperalignment to Unpack Neural Heterogeneity in the Precision Psychiatry Movement. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2021, 6, 935-936.	1.1	1
17	Decreased reward-related brain function prospectively predicts increased substance use Journal of Abnormal Psychology, 2021, 130, 886-898.	2.0	14
18	Positive social feedback alters emotional ratings and reward valuation of neutral faces. Quarterly Journal of Experimental Psychology, 2020, 73, 1066-1081.	0.6	7

#	Article	IF	CITATIONS
19	Reward Responsiveness and Ruminative Styles Interact to Predict Inflammation and Mood Symptomatology. Behavior Therapy, 2020, 51, 829-842.	1.3	21
20	Anticipation of monetary reward in amygdala, insula, caudate are predictors of pleasure sensitivity to d-Amphetamine administration. Drug and Alcohol Dependence, 2020, 206, 107725.	1.6	13
21	Amygdala subnuclei volume in bipolar spectrum disorders: Insights from diffusionâ€based subsegmentation and a highâ€risk design. Human Brain Mapping, 2020, 41, 3358-3369.	1.9	4
22	An Integrated Sleep and Reward Processing Model of Major Depressive Disorder. Behavior Therapy, 2020, 51, 572-587.	1.3	15
23	Evidence for a general factor of behavioral activation system sensitivity. Journal of Research in Personality, 2019, 79, 30-39.	0.9	19
24	The Protective Effects of Supportive Parenting on the Relationship Between Adolescent Poverty and Resting-State Functional Brain Connectivity During Adulthood. Psychological Science, 2019, 30, 1040-1049.	1.8	54
25	Higher Peripheral Inflammatory Signaling Associated With Lower Resting-State Functional Brain Connectivity in Emotion Regulation and Central Executive Networks. Biological Psychiatry, 2019, 86, 153-162.	0.7	71
26	Shifts in attentional scope modulate event-related potentials evoked by reward. Cognitive, Affective and Behavioral Neuroscience, 2019, 19, 586-599.	1.0	7
27	Future Directions for Understanding Adolescent Bipolar Spectrum Disorders: A Reward Hypersensitivity Perspective. Journal of Clinical Child and Adolescent Psychology, 2019, 48, 669-683.	2.2	58
28	The Titrated Monetary Incentive Delay Task: Sensitivity, convergent and divergent validity, and neural correlates in an RDoC sample. Journal of Clinical and Experimental Neuropsychology, 2019, 41, 512-529.	0.8	8
29	Emotional content impacts how executive function ability relates to willingness to wait and to work for reward. Cognitive, Affective and Behavioral Neuroscience, 2019, 19, 637-652.	1.0	5
30	Single-trial EEG dissociates motivation and conflict processes during decision-making under risk. NeuroImage, 2019, 188, 483-501.	2.1	15
31	Reappraisal and suppression emotion-regulation tendencies differentially predict reward-responsivity and psychological well-being. Biological Psychology, 2019, 140, 35-47.	1.1	29
32	Hypomania and depression associated with distinct neural activity for immediate and future rewards. Psychophysiology, 2019, 56, e13301.	1.2	27
33	Cortical Morphometry in the Psychosis Risk Period: A Comprehensive Perspective of Surface Features. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2019, 4, 434-443.	1.1	9
34	Beyond the FRN: Broadening the time-course of EEG and ERP components implicated in reward processing. International Journal of Psychophysiology, 2018, 132, 184-202.	0.5	207
35	Rewardâ€related cognitive vulnerability to bipolar spectrum disorders. World Psychiatry, 2018, 17, 102-103	4.8	3
36	Frontal EEG alpha asymmetry and emotion: From neural underpinnings and methodological considerations to psychopathology and social cognition. Psychophysiology, 2018, 55, e13028.	1.2	65

#	Article	IF	CITATIONS
37	Future Directions in the Study of Early-Life Stress and Physical and Emotional Health: Implications of the Neuroimmune Network Hypothesis. Journal of Clinical Child and Adolescent Psychology, 2018, 47, 142-156.	2.2	62
38	Comorbid anxiety moderates the relationship between depression history and prefrontal EEG asymmetry. Psychophysiology, 2018, 55, e12953.	1.2	36
39	Functional connectivity in central executive network protects youth against cardiometabolic risks linked with neighborhood violence. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 12063-12068.	3.3	53
40	Exercise-Mediated Neurogenesis in the Hippocampus via BDNF. Frontiers in Neuroscience, 2018, 12, 52.	1.4	311
41	How Stress Gets Under the Skin: Early Life Adversity and Glucocorticoid Receptor Epigenetic Regulation. Current Genomics, 2018, 19, 653-664.	0.7	63
42	Exercise and hippocampal neurogenesis: a dogma re-examined and lessons learned. Neural Regeneration Research, 2018, 13, 1354.	1.6	5
43	Elevated outcome-anticipation and outcome-evaluation ERPs associated with a greater preference for larger-but-delayed rewards. Cognitive, Affective and Behavioral Neuroscience, 2017, 17, 625-641.	1.0	18
44	Reward processing and mood-related symptoms: An RDoC and translational neuroscience perspective. Journal of Affective Disorders, 2017, 216, 3-16.	2.0	215
45	Laboratory-induced learned helplessness attenuates approach motivation as indexed by posterior versus frontal theta activity. Cognitive, Affective and Behavioral Neuroscience, 2017, 17, 904-916.	1.0	9
46	Affective traits and history of depression are related to ventral striatum connectivity. Journal of Affective Disorders, 2017, 221, 72-80.	2.0	21
47	Elevated nucleus accumbens structural connectivity associated with proneness to hypomania: a reward hypersensitivity perspective. Social Cognitive and Affective Neuroscience, 2017, 12, 928-936.	1.5	29
48	Assessment and Treatment of Bipolar Spectrum Disorders in Emerging Adulthood: Applying the Behavioral Approach System Hypersensitivity Model. Cognitive and Behavioral Practice, 2016, 23, 289-299.	0.9	4
49	Role of Reward Sensitivity and Processing in Major Depressive and Bipolar Spectrum Disorders. Behavior Therapy, 2016, 47, 600-621.	1.3	123
50	Willing to wait: Elevated reward-processing EEG activity associated with a greater preference for larger-but-delayed rewards. Neuropsychologia, 2016, 91, 141-162.	0.7	31
51	Positive mood enhances reward-related neural activity. Social Cognitive and Affective Neuroscience, 2016, 11, 934-944.	1.5	32
52	Early-Life Adversity and Physical and Emotional Health Across the Lifespan: A Neuroimmune Network Hypothesis. Biological Psychiatry, 2016, 80, 23-32.	0.7	470
53	Effect of failure/success feedback and the moderating influence of personality on reward motivation. Cognition and Emotion, 2016, 30, 458-471.	1.2	7
54	Neural Emotion Regulation Circuitry Underlying Anxiolytic Effects of Perceived Control over Pain. Journal of Cognitive Neuroscience, 2015, 27, 222-233.	1.1	44

#	Article	IF	CITATIONS
55	The Development and Course of Bipolar Spectrum Disorders: An Integrated Reward and Circadian Rhythm Dysregulation Model. Annual Review of Clinical Psychology, 2015, 11, 213-250.	6.3	107
56	Threat/reward-sensitivity and hypomanic-personality modulate cognitive-control and attentional neural processes to emotional stimuli. Social Cognitive and Affective Neuroscience, 2015, 10, 1525-1536.	1.5	8
57	Asymmetrical frontal cortical activity associated with differential risk for mood and anxiety disorder symptoms: An RDoC perspective. International Journal of Psychophysiology, 2015, 98, 249-261.	0.5	75
58	Motivated to win: Relationship between anticipatory and outcome reward-related neural activity. Brain and Cognition, 2015, 100, 21-40.	0.8	95
59	Elevated reward-related neural activation as a unique biological marker of bipolar disorder: Assessment and treatment implications. Behaviour Research and Therapy, 2014, 62, 74-87.	1.6	58
60	Dissociable patterns of abnormal frontal cortical activation during anticipation of an uncertain reward or loss in bipolar versus major depression. Bipolar Disorders, 2013, 15, 839-854.	1.1	136
61	Life events, sleep disturbance, and mania: An integrated model Clinical Psychology: Science and Practice, 2013, 20, 195-210.	0.6	6
62	Progression along the bipolar spectrum: A longitudinal study of predictors of conversion from bipolar spectrum conditions to bipolar I and II disorders Journal of Abnormal Psychology, 2012, 121, 16-27.	2.0	136
63	Elevated left mid-frontal cortical activity prospectively predicts conversion to bipolar I disorder Journal of Abnormal Psychology, 2012, 121, 592-601.	2.0	57
64	Frontal <scp>EEG</scp> asymmetry moderates the effects of stressful life events on internalizing symptoms in children at familial risk for depression. Psychophysiology, 2012, 49, 510-521.	1.2	77
65	Waiting to win: elevated striatal and orbitofrontal cortical activity during reward anticipation in euthymic bipolar disorder adults. Bipolar Disorders, 2012, 14, 249-260.	1.1	218
66	Interpersonal Social Rhythm Therapy (IPSRT) for Bipolar Disorder. , 2012, , 103-121.		5
67	Subthreshold bipolarity: diagnostic issues and challenges. Bipolar Disorders, 2011, 13, 587-603.	1.1	82
68	Cognitive vulnerability and frontal brain asymmetry: Common predictors of first prospective depressive episode Journal of Abnormal Psychology, 2011, 120, 497-503.	2.0	92
69	Increased rates of events that activate or deactivate the behavioral approach system, but not events related to goal attainment, in bipolar spectrum disorders Journal of Abnormal Psychology, 2010, 119, 610-615.	2.0	36
70	Psychosocial interventions for bipolar disorder: Perspective from the behavioral approach system (BAS) dysregulation theory Clinical Psychology: Science and Practice, 2009, 16, 449-469.	0.6	44
71	Behavioral approach system (BAS)–relevant cognitive styles and bipolar spectrum disorders: Concurrent and prospective associations Journal of Abnormal Psychology, 2009, 118, 459-471.	2.0	100
72	Behavioral Approach System and Behavioral Inhibition System sensitivities and bipolar spectrum disorders: prospective prediction of bipolar mood episodes. Bipolar Disorders, 2008, 10, 310-322.	1.1	211

#	Article	IF	CITATIONS
73	Effect of Bipolar Disorder on Left Frontal Cortical Responses to Goals Differing in Valence and Task Difficulty. Biological Psychiatry, 2008, 63, 693-698.	0.7	117
74	A goal-striving life event and the onset of hypomanic and depressive episodes and symptoms: Perspective from the Behavioral Approach System (BAS) dysregulation theory Journal of Abnormal Psychology, 2007, 116, 105-115.	2.0	128
75	Behavioral Approach System (BAS) Sensitivity and Bipolar Spectrum Disorders: A Retrospective and Concurrent Behavioral High-Risk Design. Motivation and Emotion, 2006, 30, 143-155.	0.8	82
76	Psychosocial risk factors for bipolar disorder. , 2006, , 11-46.		7
77	The psychosocial context of bipolar disorder: Environmental, cognitive, and developmental risk factors. Clinical Psychology Review, 2005, 25, 1043-1075.	6.0	187
78	Disruption in Pavlovian-Instrumental Transfer as a Function of Depression and Anxiety. Journal of Psychopathology and Behavioral Assessment, 0, , 1.	0.7	0