MarÃ-a JesÃ^os GarcÃ-a MartÃ-nez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1142825/publications.pdf

Version: 2024-02-01

471509 434195 36 958 17 31 citations h-index g-index papers 37 37 37 1265 docs citations times ranked all docs citing authors

#	Article	IF	CITATIONS
1	Biodiesel from Jojoba oil-wax: Transesterification with methanol and properties as a fuel. Biomass and Bioenergy, 2006, 30, 76-81.	5.7	168
2	Biodegradation of Oil Tank Bottom Sludge using Microbial Consortia. Biodegradation, 2007, 18, 269-281.	3.0	76
3	Biokerosene from coconut and palm kernel oils: Production and properties of their blends with fossil kerosene. Fuel, 2012, 102, 483-490.	6.4	71
4	Boil off gas (BOG) management in Spanish liquid natural gas (LNG) terminals. Applied Energy, 2010, 87, 3384-3392.	10.1	66
5	Natural attenuation and bioremediation of Prestige fuel oil along the Atlantic coast of Galicia (Spain). Organic Geochemistry, 2006, 37, 1869-1884.	1.8	59
6	Photodegradation of polycyclic aromatic hydrocarbons in fossil fuels catalysed by supported TiO2. Applied Catalysis B: Environmental, 2006, 67, 279-289.	20.2	47
7	Continuous photodegradation of naphthalene in water catalyzed by TiO2 supported on glass Raschig rings. Chemical Engineering Journal, 2005, 110, 123-128.	12.7	45
8	Fatty acid ethyl esters (FAEEs) obtained from grapeseed oil: A fully renewable biofuel. Renewable Energy, 2019, 132, 278-283.	8.9	45
9	Comparative life cycle assessment of conventional, electric and hybrid passenger vehicles in Spain. Journal of Cleaner Production, 2021, 291, 125883.	9.3	41
10	Probabilistic multi-pathway human health risk assessment due to heavy metal(loid)s in a traditional gold mining area in Ecuador. Ecotoxicology and Environmental Safety, 2021, 224, 112629.	6.0	32
11	Kinetics of amino acid racemization (epimerization) in the dentine of fossil and modern bear teeth. International Journal of Chemical Kinetics, 2003, 35, 576-591.	1.6	29
12	Bear dentine aspartic acid racemization analysis: a proxy for the dating of Pleistocene cave infills. Archaeometry, 2002, 44, 417-426.	1.3	22
13	Multi-pathway human exposure risk assessment using Bayesian modeling at the historically largest mercury mining district. Ecotoxicology and Environmental Safety, 2020, 201, 110833.	6.0	22
14	Human Health Risk Assessment for Exposure to Potentially Toxic Elements in Polluted Rivers in the Ecuadorian Amazon. Water (Switzerland), 2021, 13, 613.	2.7	21
15	Polycyclic Aromatic Hydrocarbons (PAHs) produced in the combustion of fatty acid alkyl esters from different feedstocks: Quantification, statistical analysis and mechanisms of formation. Science of the Total Environment, 2017, 586, 446-456.	8.0	20
16	Optimization of Landfarming Amendments Based on Soil Texture and Crude Oil Concentration. Water, Air, and Soil Pollution, 2018, 229, 1.	2.4	20
17	Hydrogenated Turpentine: A Biobased Component for Jet Fuel. Energy & Samp; Fuels, 2021, 35, 1465-1475.	5.1	20
18	Techno-economic and life cycle assessment of triisobutane production and its suitability as biojet fuel. Applied Energy, 2020, 268, 114897.	10.1	18

#	Article	IF	CITATIONS
19	Geochemical characterization of the mining district of Linares (Jaen, Spain) by means of XRF and ICP-AES. Journal of Geochemical Exploration, 2011, 108, 21-26.	3.2	17
20	A new ranking scale for assessing leaching potential pollution from abandoned mining wastes based on the Mexican official leaching test. Journal of Environmental Management, 2020, 273, 111139.	7.8	16
21	Ecological and probabilistic human health risk assessment of heavy metal(loid)s in river sediments affected by mining activities in Ecuador. Environmental Geochemistry and Health, 2021, 43, 4459-4474.	3.4	16
22	Fatty Acid Ethyl Esters from Animal Fat Using Supercritical Ethanol Process. Energy & Energy	5.1	13
23	Geochemical evolution of amino acids in dentine of pleistocene bears. Chirality, 2001, 13, 517-521.	2.6	12
24	Optimized Production of Fatty Acid Ethyl Esters (FAEE) from Waste Frying Oil by Response Surface Methodology. Waste and Biomass Valorization, 2021, 12, 2303-2310.	3.4	12
25	Biojet fuel production from oleaginous crop residues: thermoeconomic, life cycle and flight performance analysis. Energy Conversion and Management, 2021, 244, 114534.	9.2	12
26	Experimental Study of Biogas–Hydrogen Mixtures Combustion in Conventional Natural Gas Systems. Applied Sciences (Switzerland), 2021, 11, 6513.	2.5	10
27	Weighted linear models for simulation and prediction of biodegradation in diesel polluted soils. Science of the Total Environment, 2019, 686, 580-589.	8.0	6
28	Design and Pinch Analysis of a GFT Process for Production of Biojet Fuel from Biomass and Plastics. Energies, 2021, 14, 6035.	3.1	6
29	Leaching of polycyclic aromatic hydrocarbons (PAHs) from coal dumps reclaimed with apple trees: a mechanistic insight. Environmental Geochemistry and Health, 2018, 40, 2695-2706.	3.4	5
30	Techno-economic, life cycle, and environmental cost assessment of biojet fuel obtained from <i>Pinus pinaster</i> by turpentine hydrogenation. Sustainable Energy and Fuels, 2022, 6, 2478-2489.	4.9	4
31	Geographical variability of the composition and properties of fatty acid methyl esters from <i>Citrullus colocynthis</i> in Tunisia. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2017, 39, 1556-1564.	2.3	2
32	Biodiesel from Waste Olive Oil: Transesterification Kinetics, Exhaust Emissions and Fuel Consumption. Alliance for Global Sustainability Bookseries, 2009, , 61-69.	0.2	1
33	Gesti $ ilde{A}^3$ n eficiente de la evaluaci $ ilde{A}^3$ n continua del alumnado. La integraci $ ilde{A}^3$ n del trabajo de escritorio con Moodle. Arbor, 2011, 187, 201-206.	0.3	1
34	Monitoring of Soil Gases in the Characterization Stage of CO2 Storage in Saline Aquifers and Possible Effects of CO2 Leakages in the Groundwater System., 2016,, 81-95.		1
35	La-Faujasite zeolite activated with boron trifluoride: synthesis and application as solid acid catalyst for isobutane–isobutene alkylation. Applied Petrochemical Research, 2021, 11, 353-362.	1.3	1
36	Thermochemical conversion of agricultural waste to biojet fuel. , 2022, , 27-48.		0